2022年上海中考数学真题 一.选择题 1. 8的相反数是( ) A. B. 8 C. D. 【答案】A 【解析】 【分析】根据只有符号不同的两个数互为相反数进行解答即可得. 【详解】解:8的相反数是, 故选A. 【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键. 2. 下列运算正确的是……( ) A. a²+a³=a6 B. (ab)2 =ab2 C. (a+b)²=a²+b² D. (a+b)(a-b)=a² -b2 【答案】D 【解析】 【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D. 【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意; B.(ab)2 =a2b2,故此选项不符合题意; C.(a+b)²=a²+2ab+b²,故此选项不符合题意 D(a+b)(a-b)=a² -b2,故此选项符合题意 故选:D. 【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键. 3. 已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为( ) A. (2,3) B. (-2,3) C. (3,0) D. (-3,0) 【答案】B 【解析】 【分析】根据反比例函数性质求出k<0,再根据k=xy,逐项判定即可. 【详解】解:∵反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,, ∴k=xy<0, A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意; B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意; C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意; D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意; 故选:B. 【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键. 4. 我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( ) A. 平均数 B. 中位数 C. 众数 D. 方差 【答案】D 【解析】 【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案. 【详解】解:将这组数据都加上6得到一组新的数据, 则新数据的平均数改变,众数改变,中位数改变,但是方差不变; 故选:D. 【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键. 5. 下列说法正确的是( ) A. 命题一定有逆命题 B. 所有的定理一定有逆定理 C. 真命题的逆命题一定是真命题 D. 假命题的逆命题一定是假命题 【答案】A 【解析】 【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案. 【详解】解:A、命题一定有逆命题,故此选项符合题意; B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意; C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意; D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意. 故选:A. 【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题. 6. 有一个正n边形旋转后与自身重合,则n为( ) A. 6 B. 9 C. 12 D. 15 【答案】C 【解析】 【分析】根据选项求出每个选项对应的正多边形的中心角度数,与一致或有倍数关系的则符合题意. 【详解】如图所示,计算出每个正多边形中心角,是的3倍,则可以旋转得到. A. B. C. D. 观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合 故选C. 【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系. 二.填空题 7. 计算:3a-2a=__________.