广东省中考数学押题卷二
选择题(30分)
1.﹣2019的相反数是( )
A.2019 B. C.﹣ D.﹣2019
2.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为( )
A.42.1×105 B.4.21×105 C.4.21×106 D.4.21×107
3.下列运算结果,正确的是( )
A.x+2x=2x2 B.(x﹣1)2=x2﹣1
C.(﹣x2)3=﹣x5 D.12x3÷4x2=3x
4.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( )
A. B.
C. D.
5.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球摸到绿球的概率为( )
A.1 B. C. D.
6..如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为( )
A.120° B.100° C.60° D.20°
7.在一次中学生田径运动会上,参加男子跳高的20名运动员的成绩如表所示:
成绩(m)
1.55
1.60
1.65
1.70
1.75
1.80
人数
4
3
5
6
1
1
则这些运动员成绩的众数与中位数为( )
A.1.55m,1.65m B.1.65m,1,70m
C.1.70m,1.65m D.1.80m,1.55m
8.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )
A.2B.4C.6D.8
9.若关于x的一元二次方程kx2﹣4x+1=0有实数根,则k的取值范围是( )
A.k=4 B.k>4 C.k≤4且k≠0 D.k≤4
10.如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90°,得到线段BC,若点C落在函数y=(x>0)的图象上,则k的值为( )
A.3 B.4 C.6 D.8
填空题(24分)
11.分解因式:x2﹣4x= .
12.下列各式是按新定义的已知“△”运算得到的,观察下列等式:
2△5=2×3+5=11,2△(﹣1)=2×3+(﹣1)=5,
6△3=6×3+3=21,4△(﹣3)=4×3+(﹣3)=9……
根据这个定义,计算(﹣2018)△2018的结果为
13.有下列平面图形:①线段;②等腰直角三角形;③平行四边形;④矩形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的有 .(填序号)
14.如图,在矩形ABCD中,AD=2AB=2,E是BC边上的一个动点,连接AE,过点D作DF⊥AE于F,连接CF,当△CDF为等腰三角形时,则BE的长是
15.如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是 .
16.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是 .
解答题(18分)
17.计算:(﹣π)0﹣6tan30°+()﹣2+|1﹣|
先化简,再求值:( +)÷,其中x=﹣1.
19.如图,△ABC中,AC=8,BC=10,AC>AB.
(1)用尺规作图法在△ABC内求作一点D,使点D到两点A、C的距离相等,又到边AC、BC的距离相等(保留作图痕迹,不写作法);
(2)若△ACD的周长为18,求△BCD的面积.
解答题(21分)
20.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:
(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.
(2)在图2扇形统计图中,m的值为 ,表示“D等级”的扇形的圆心角为 度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
21.如图所示,建筑物MN一侧有一斜坡AC,在斜坡坡脚A处测得建筑物顶部N的仰角为60°,当太阳光线与水平线夹角成45°时,建筑物MN的影子的一部分在水平地面上MA处,另一部分影子落在斜坡上AP处,已知点P的距水平地面AB的高度PD=5米,斜坡AC的坡度