下载此文档

人教版数学考点34 图形的对称、平移与位似(解析版).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载28页472 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版数学考点34 图形的对称、平移与位似(解析版).docx
文档介绍:
考点三十四 图形的对称、平移与位似
【命题趋势】
在中考,这是必考内容,主要考查形式包括:单纯判断对称图形的识别;利用对称图形的性质求点坐标;利用折叠的对称性性质的相关计算与证明。

【中考考查重点】
一、轴对称图形与中心对称图形
二、图形的平移
三、图形的旋转
四、位似
考点:轴对称图形与轴对称
轴对称图形
轴对称




如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴
如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴


对应线段相等
AB=AC
AB=A′B′,BC=B′C′,
AC=A′C′
对应角相等
∠B=∠C
∠A=∠A′,∠B=∠B′,
∠C=∠C′
对应点所连的线段被对称轴垂直平分


(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;
(2)对称轴不一定只有一条
(1)轴对称是指两个图形的位置关系,必须涉及两个图形;
(2)只有一条对称轴


(1)沿对称轴对折,两部分重合;
(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称
(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形
1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.
2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.
3.作某点关于某直线的对称点的一般步骤
1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.
4.作已知图形关于某直线的对称图形的一般步骤
1)作出图形的关键点关于这条直线的对称点;
2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.
1.(2021•黄石)下列几何图形中,是轴对称图形但不是中心对称图形的是(  )
A.梯形 B.等边三角形 C.平行四边形 D.矩形
【答案】 B
【解答】解:A.梯形不一定是轴对称图形,不是中心对称图形,故此选项不合题意;
B.等边三角形是轴对称图形,不是中心对称图形,故此选项符合题意;
C.平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;
D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;
故选:B.
2.(2021•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )
A. B. C. D.
【答案】A
【解答】解:A.是轴对称图形,故此选项符合题意;
B.不是轴对称图形,故此选项不合题意;
C.不是轴对称图形,故此选项不合题意;
D.不是轴对称图形,故此选项不合题意;
故选:A.
3.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是(  )
A.0 B.5 C.6 D.7
【答案】B
【解答】解:连接OP1,OP2,P1P2,
∵点P关于直线l,m的对称点分别是点P1,P2,
∴OP1=OP=2.8,OP=OP2=2.8,
OP1+OP2>P1P2,
0<P1P2<5.6,
故选:B.
考点:图形的平移
1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.
2.三大要素: 一是平移的起点,二是平移的方向,三是平移的距离.
3.性质:
1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.
4.作图步骤:
1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.
4.(2021•金华)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离
为   cm.
【答案】2
【解答】解:如图,连接BD,过点E作EF⊥AC于点F,
∵四边形ABCD是菱形,
∴AD=AB,BD⊥AC,
∵∠BAD=60°,
∴三角形A
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档