下载此文档

专题22图形的相似(共55题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载91页4.38 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题22图形的相似(共55题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx
文档介绍:
2021年中考数学真题分项汇编【全国通用】(第01期)
专题22图形的相似(共55题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,是位似中心,位似比为,点,的对应点分别为点,.若,则的长为( )
A.8 B.9 C.10 D.15
【答案】B
【分析】
直接利用位似图形的性质得出线段比进而得出答案.
【详解】
解:∵图形甲与图形乙是位似图形,是位似中心,位似比为,
∴,
∵,
∴,

故答案为:B.
【点睛】
此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.
2.(2021·山东东营市·中考真题)如图,中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作的位似图形,并把的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点的横坐标是( )
A. B. C. D.
【答案】A
【分析】
设点的横坐标为,然后表示出、的横坐标的距离,再根据位似比列式计算即可得解.
【详解】
设点的横坐标为,
则、间的横坐标的差为,、间的横坐标的差为,
放大到原来的倍得到,

解得:.
故选:A.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
3.(2021·浙江绍兴市·中考真题)如图,树AB在路灯O的照射下形成投影AC,已知路灯高,树影,树AB与路灯O的水平距离,则树的高度AB长是( )
A. B. C. D.
【答案】A
【分析】
利用相似三角形的性质得到对应边成比例,列出等式后求解即可.
【详解】
解:由题可知,,
∴,
∴,
∴,
故选A.
【点睛】
本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.
4.(2021·四川遂宁市·中考真题)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为( )
A.12cm2 B.9cm2 C.6cm2 D.3cm2
【答案】B
【分析】
由三角形的中位线定理可得DE=BC,DE∥BC,可证△ADE∽△ABC,利用相似三角形的性质,即可求解.
【详解】
解:∵点D,E分别是边AB,AC的中点,
∴DE=BC,DE∥BC,
∴△ADE∽△ABC,
∴,
∵S△ADE=3,
∴S△ABC=12,
∴四边形BDEC的面积=12-3=9(cm2),
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.
5.(2021·重庆中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是( )
A.1:2 B.1:4 C.1:3 D.1:9
【答案】A
【分析】
利用位似的性质得△ABC∽△DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.
【详解】
解:∵△ABC与△DEF位似,点O为位似中心.
∴△ABC∽△DEF,OB:OE= 1:2,
∴△ABC与△DEF的周长比是:1:2.
故选:A.
【点睛】
本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.
6.(2021·江苏扬州市·中考真题)如图,点P是函数的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数的图像于点C、D,连接、、
、,其中,下列结论:①;②;③,其中正确的是( )
A.①② B.①③ C.②③ D.①
【答案】B
【分析】
设P(m,),分别求出A,B,C,D的坐标,得到PD,PC,PB,PA的长,判断和的关系,可判断①;利用三角形面积公式计算,可得△PDC的面积,可判断③;再利用计算△OCD的面积,可判断②.
【详解】
解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,
设P(m,),
则C(m,),A(m,0),B(0,),令,
则,即D(,),
∴PC==,PD==,
∵,,即,
又∠DPC=∠BPA,
∴△PDC∽△PBA,
∴∠PDC
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档