下载此文档

专题24圆的有关性质(共54题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载73页2.41 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题24圆的有关性质(共54题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx
文档介绍:
2021年中考数学真题分项汇编【全国通用】(第01期)
专题24圆的有关性质(共54题)
一、单选题
1.(2021·甘肃武威市·中考真题)如图,点在上,,则( )
A. B. C. D.
【答案】D
【分析】
先证明再利用等弧的性质及圆周角定理可得答案.
【详解】
解: 点在上,,


故选:
【点睛】
本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.
2.(2021·广西玉林市·中考真题)学****圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )
A.两人说的都对
B.小铭说的对,小燕说的反例不存在
C.两人说的都不对
D.小铭说的不对,小熹说的反例存在
【答案】D
【分析】
根据垂径定理可直接进行排除选项.
【详解】
解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:
小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;
故选D.
【点睛】
本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.
3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于,两点,他测得“图上”圆的半径为10厘米,厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).
A.1.0厘米/分 B.0.8厘米分 C.12厘米/分 D.1.4厘米/分
【答案】A
【分析】
首先过⊙O的圆心O作CD⊥AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.
【详解】
解:过⊙O的圆心O作CD⊥AB于C,交⊙O于D,连接OA,
∴AC=AB=×16=8(厘米),
在Rt△AOC中,(厘米),
∴CD=OC+OD=16(厘米),
∵从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,
∴16÷16=1(厘米/分).
∴“图上”太阳升起的速度为1.0厘米/分.
故选:A.
【点睛】
此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.
4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB=,∠CAB=30°,则∠ABC的度数为( )
A.95° B.100° C.105° D.110°
【答案】C
【分析】
连接OB,OC,根据勾股定理逆定理可得∠AOB=90°,∠ABO=∠BAO=45°,根据圆周角定理可得∠COB=2∠CAB=60°,∠OBC=∠OCB=60°,由此可求得答案.
【详解】
解:如图,连接OB,OC,
∵OA=OB=1,AB=,
∴OA2+OB2=AB2,
∴∠AOB=90°,
又∵OA=OB,
∴∠ABO=∠BAO=45°,
∵∠CAB=30°,
∴∠COB=2∠CAB=60°,
又∵OC=OB,
∴∠OBC=∠OCB=60°,
∴∠ABC=∠ABO+∠OBC=105°,
故选:C.
【点睛】
本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键.
5.(2021·湖北鄂州市·中考真题)已知锐角,如图,按下列步骤作图:①在边取一点,以为圆心,长为半径画,交于点,连接.②以为圆心,长为半径画,交于点,连接.则的度数为( )
A. B. C. D.
【答案】B
【分析】
根据画图过程,得到OD=OC,由等边对等角与三角形内角和定理得到∠ODC=∠OCD=,同理得到
∠DOE=∠DEO=40︒,由∠OCD为△DCE的外角,得到结果.
【详解】
解:∵以为圆心,长为半径画,交于点,
∴OD=OC,
∴∠ODC=∠OCD,
∵∠AOB=40︒,
∴∠ODC=∠OCD=,
∵以为圆心,长为半径画,交于点,
∴DO=DE,
∴∠DOE=∠DEO=40︒,
∵∠OCD为△DCE的外角,
∴∠OCD=∠DEC+∠CDE,
∴70︒=40︒+∠CDE,
∴∠CDE=30︒,
故选:B.
【点睛】
本题考查了等
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档