下载此文档

人教版初中数学专题17 二次函数的面积问题(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载96页4.92 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题17 二次函数的面积问题(解析版).doc
文档介绍:
决胜2021中考数学压轴题全揭秘精品
专题17二次函数的面积问题
【考点1】二次函数的线段最值问题
【例1】(2020·湖北荆门·中考真题)如图,抛物线与x轴正半轴交于点A,与y轴交于点B.
(1)求直线的解析式及抛物线顶点坐标;
(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;
(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物线的解析式.
【答案】(1)直线的解析式为,抛物线顶点坐标为;(2)当时,的最大值为; ;(3).
【分析】
(1)先根据函数关系式求出A、B两点的坐标,设直线的解析式为,利用待定系数法求出AB的解析式,将二次函数解析式配方为顶点式即可求得顶点坐标;
(2)过点D作轴于E,则.求得AB=5,设点P的坐标为,则点D的坐标为,ED=x,证明,由相似三角形的性质求出,用含x的式子表示PD,配方求得最大值,即可求得点P的坐标;
(3)设平移后抛物线的解析式,将L′的解析式和直线AB联立,得到关于x的方程,设,则是方程的两根,得到,点A为的中点,,可求得m的值,即可求得L′的函数解析式.
【详解】
(1)在中,
令,则,解得,
∴.
令,则,∴.
设直线的解析式为,则,解得:,
∴直线的解析式为.

∴抛物线顶点坐标为
(2)如图,过点D作轴于E,则.
∵,
∴,
设点P的坐标为,
则点D的坐标为,
∴.
∵,
∴,
∴,
∴,
∴.
而,
∴,
∵,,由二次函数的性质可知:
当时,的最大值为.

∴.
(3)设平移后抛物线的解析式,
联立,
∴,
整理,得:,
设,则是方程的两根,
∴.
而A为的中点,∴,
∴,解得:.
∴抛物线的解析式.
【点睛】
本题考查二次函数的图象和性质、相似三角形的判定与性质、待定系数法求一次函数解析式,解题的关键是熟练掌握二次函数的图象和性质.
【变式1-1】(2020·前郭尔罗斯蒙古族自治县哈拉毛都镇蒙古族中学九年级期中)如图,二次函数的图象交x轴于点,,交y轴于点C.点是x轴上的一动点,轴,交直线于点M,交抛物线于点N.

(1)求这个二次函数的表达式;
(2)①若点P仅在线段上运动,如图1.求线段的最大值;
②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
【答案】(1);(2)①,②存在,
【分析】
(1)把代入中求出b,c的值即可;
(2)①由点得,从而得,整理,化为顶点式即可得到结论;
②分MN=MC和两种情况,根据菱形的性质得到关于m的方程,求解即可.
【详解】
解:(1)把代入中,得

解得
∴.
(2)设直线的表达式为,把代入.
得,解这个方程组,得
∴.
∵点是x轴上的一动点,且轴.
∴.


∵,
∴此函数有最大值.
又∵点P在线段上运动,且
∴当时,有最大值.
②∵点是x轴上的一动点,且轴.
∴.

(i)当以M,N,C,Q为顶点的四边形为菱形,则有MN=MC,如图,
∵C(0,-3)
∴MC=

整理得,
∵,
∴,
解得,,
∴当时,CQ=MN=,
∴OQ=-3-()=
∴Q(0,);
当m=时,CQ=MN=-,
∴OQ=-3-(-)=
∴Q(0,);
(ii)若,如图,
则有
整理得,
∵,
∴,
解得,,
当m=-1时,MN=CQ=2,
∴Q(0,-1),
当m=-5时,MN=-10<0(不符合实际,舍去)
综上所述,点Q的坐标为
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m的方程,要分类讨论,以防遗漏.
【变式1-2】如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).
(1)求顶点A的坐标
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档