下载此文档

人教版初中数学第3关 多结论的几何及二次函数问题为背景的选择填空题(解析版).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载49页1.32 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学第3关 多结论的几何及二次函数问题为背景的选择填空题(解析版).docx
文档介绍:
第3关 多结论的几何及二次函数问题为背景的选择填空题
【考查知识点】
以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】
1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学****几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.
2. 以二次函数为背景的选择填空题中,根据图象的位置确定a、b、c的符号,a>0开口向上,a<0开口向下.抛物线的对称轴为x=,由图像确定对称轴的位置,由a的符号确定出b的符号.由x=0时,y=c,知c的符号取决于图像与y轴的交点纵坐标,与y轴交点在y轴的正半轴时,c>0,与y轴交点在y轴的负半轴时,c<0.确定了a、b、c的符号,易确定abc的符号;根据对称轴确定a与b的关系;根据图象还可以确定△的符号,及a+b+c和a-b+c的符号。
【典型例题】
【例1】(2019·新疆中考真题)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则下列结论中:
①;②;③tan∠EAF=;④正确的是()
A.①②③ B.①②④ C.①③④ D.②③④
【答案】A
【解析】
【分析】
利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE=,再根据三角函数即可得出③;作PH⊥AN于H.利用平行线的性质求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④
【详解】
解:∵正方形ABCD的边长为2,点E是BC的中点,
∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,
∵AF⊥DE,
∴∠DAF+∠ADN=∠ADN+∠CDE=90°,
∴∠DAN=∠EDC,
在△ADF与△DCE中, ,
∴△ADF≌△DCE(ASA),
∴DF=CE=1,
∵AB∥DF,
∴△ABM∽△FDM,
∴,
∴S△ABM=4S△FDM;故①正确;
根据题意可知:AF=DE=AE=,
∵ ×AD×DF=×AF×DN,
∴DN= ,
∴EN=,AN=,
∴tan∠EAF=,故③正确,
作PH⊥AN于H.
∵BE∥AD,
∴,
∴PA=,
∵PH∥EN,
∴,
∴AH=,
∴PH=
∴PN=,故②正确,
∵PN≠DN,
∴∠DPN≠∠PDE,
∴△PMN与△DPE不相似,故④错误.
故选:A.
【名师点睛】
此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质
【例2】(2019·湖北中考真题)抛物线的对称轴是直线,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断:
①且;
②;
③;
④;
⑤直线与抛物线两个交点的横坐标分别为,则.其中正确的个数有( )
A.5个 B.4个 C.3个 D.2个
【答案】C
【解析】
【分析】
根据对称轴的位置及图象与y轴的交点位置可对①进行判断;由图象过点(1,0)及对称轴可得图象与x轴的另一个交点坐标,由抛物线开口方向可得a<0,可得x=-2时y>0,可对②进行判断;由对称轴方程可得b=2a,由图象过点(1,0)可知a+b+c=0,即可得出3a+c=0,可对③④进行判断;由ax2+bx+c=2x+2可得ax2+(b-2)x+c-2=0,根据一元二次方程根与系数的故选可对⑤进行判断,综上即可得答案.
【详解】
∵对称轴在y轴左侧,图象与y轴交于y轴正半轴,
∴ab>0,c>0,故①错误,
∵图象过点(1,0),对称轴为x=-1,
∴图象与x轴的另一个交点为(-3,0),
∵抛物线的开口向下,
∴a<0,
∴x=-2时,4a-b+c>0,故②正确,
∵对称轴x==-1,
∴b=2a,
∵x=1时,a+b+c=0,
∴3a+c=0,
∴8a+c=5a<0,故③错误,
∵3a+c=0,
∴c=-3a,
∴3a-3b=3a-3×2a=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档