下载此文档

人教版初中数学专题33 中考几何折叠翻折类问题(解析版).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载36页691 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题33 中考几何折叠翻折类问题(解析版).docx
文档介绍:
专题33 中考几何折叠翻折类问题
1.轴对称(折痕)的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.
2.折叠或者翻折试题解决哪些问题
(1)求角度大小;
(2)求线段长度;
(3)求面积;
(4)其他综合问题。
3.解决折叠问题的思维方法
(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为(  )
A.10° B.20° C.30° D.40°
【答案】A
【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.
∵∠BAC=90°,∠B=50°,
∴∠C=40°,
∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',
∴∠AB'B=∠B=50°,
∴∠CAB'=∠AB'B﹣∠C=10°。
【对点练****2019重庆)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1,连接DE,将△AED沿直线沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF,过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( )
A.8 B. C. D..
【答案】D.
【解析】
易证△AED≌△AEF≌△BGD,得ED=EF=GD,∠DGE=45°,
进而得∠BGD=∠AED=∠AEF=135°,
易得△DEG和△DEF都是等腰直角三角形,
设DG=x,则EG=x,
注意AB=3,BG=AE=1,∠AEB=90°,
可解得x=.
【例题2】(2020贵州黔西南)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为________.
【答案】
【解析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.
解:如答图,由第一次折叠得EF⊥AD,AE=DE,
∴∠AEF=90°,AD=2AE.
∵四边形ABCD是矩形,
∴∠D=∠DAB=90°,
∴∠AEF=∠D,
∴EF∥CD,
∴△AEN∽△ADM,
∴==,
∴AN=AM,
∴AN=MN,
又由第二次折叠得∠AGM=∠D=90°,
∴NG=AM,
∴AN=NG,
∴∠2=∠4.
由第二次折叠得∠1=∠2,
∴∠1=∠4.
∵AB∥CD,EF∥CD,
∴EF∥AB,∴∠3=∠4,
∴∠1=∠2=∠3.
∵∠1+∠2+∠3=∠DAB=90°,
∴∠1=∠2=∠3=30°.
∵四边形ABCD是矩形,
∴AD=BC=2.
由第二次折叠得AG=AD=2.
由第一次折叠得AE=AD=×2=1.
在Rt△AEG中,由勾股定理得EG===
【点拨】此题主要考查了翻折变换的性质以及矩形的性质,正确得出∠2=∠4是解题关键.
【对点练****2019四川内江)如图,在菱形ABCD中,simB=,点E,F分别在边AD、BC上,将四边形AEFB沿EF翻折,使AB的对应线段MN经过顶点C,当MN⊥BC时,的值是   .
【答案】
【解析】延长CM交AD于点G,
∵将四边形AEFB沿EF翻折,
∴AE=ME,∠A=∠EMC,BF=FN,∠B=∠N,AB=MN
∵四边形ABCD
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档