下载此文档

人教版初中数学专题13 轴对称(解析版).docx


初中 七年级 下学期 数学 人教版

1340阅读234下载26页1.29 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题13 轴对称(解析版).docx
文档介绍:
专题13 轴对称
知识点1:轴对称
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.对称点:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3.线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
线段的垂直平分线的性质
(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
知识点2:画轴对称图形的方法
几何图形都可以看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
知识点3:等腰三角形与等边三角形
1.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
2.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
3.等腰三角形的判定:等角对等边。
4.等边三角形角的特点:三个内角相等,等于60°,
5.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
6.直角三角形中,30°角所对的直角边等于斜边的一半。
7.直角三角形斜边上的中线等于斜边的一半。
一、学****线段的垂直平分线要求
1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.
2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.
3.已知底边和底边上的高,求作等腰三角形.
4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.
二、线段的垂直平分线要点梳理
要点一、线段的垂直平分线
线段的垂直平分线定义。经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂
直平分线,也叫线段的中垂线.
2.线段垂直平分线的做法。求作线段AB的垂直平分线.
作法:(1)分别以点A,B为圆心,以大于AB的长为半径作弧,两弧相交于C,D两点;
说明:作弧时的半径必须大于AB的长,否则就不能得到两弧的交点了.
(2)作直线CD,CD即为所求直线.
说明:线段的垂直平分线的实质是一条直线.
要点二、线段的垂直平分线定理
线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.
线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之
一。同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段
垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.
要点三、线段的垂直平分线逆定理
线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
要点解读:
到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.
要点四、三角形的外心
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.
要点解读:
1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.
2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.
3.外心到三顶点的距离相等.
要点五、尺规作图
作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.
三、线段的垂直平分线试题类型
类型一:线段的垂直平分线定理
类型二:线段的垂直平分线的逆定理
类型三:线段的垂直平分线定理与逆定理的综合应用
类型四:尺规作图
【例题1】(2019•江苏泰州)如图图形中的轴对称图形是(  )
A.B.C.D.
【答案】B
【解析】本题考查的是轴对称图形的概念,轴对称
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档