下载此文档

人教版初中数学专题38 反比例函数问题(解析版).docx


初中 七年级 下学期 数学 人教版

1340阅读234下载28页663 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题38 反比例函数问题(解析版).docx
文档介绍:
专题38 反比例函数
1.反比例函数:形如y=(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k、 。
2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点。它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3.性质:(1)当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
(2)当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5.反比例函数解析式的确定
由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
【例题1】(2020•德州)函数y=kx和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是(  )
A.B. C.D.
【答案】D
【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.
【解析】在函数y=kx和y=﹣kx+2(k≠0)中,
当k>0时,函数y=kx的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,
当k<0时,函数y=kx的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,
【对点练****2019广西贺州)已知,一次函数与反比例函数在同一直角坐标系中的图象可能  
【答案】A
【解析】若反比例函数经过第一、三象限,则.所以.则一次函数的图象应该经过第一、二、三象限;
若反比例函数经过第二、四象限,则.所以.则一次函数的图象应该经过第二、三、四象限.故选项正确。
【例题2】(2020•天津)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系是(  )
A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x3<x1<x2
【答案】C
【分析】将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数y=10x,求得x1,x2,x3的值后,再来比较一下它们的大小.
【解析】∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,
∴﹣5=10x,即x1=﹣2,
2=10x,即x2=5;
5=10x,即x3=2,
∵﹣2<2<5,
∴x1<x3<x2
【对点练****2020湖北黄石模拟)已知反比例函数(为常数),当时,随的增大
而增大,则一次函数的图像不经过第几象限( )
A.一 B. 二 C. 三 D. 四
【答案】B。
【解析】∵反比例函数(b为常数),当x>0时,y随x的增大而增大,∴b<0。
∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限。
∴此函数的图象不经过第二象限。故选B。
【点拨】一次函数图象与系数的关系,反比例函数的性质。
【例题3】(2020贵州黔西南)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为( )
A. y= B. y= C. y= D. y=
【答案】B
【解析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.
解:因为在菱形ABOC中,∠A=60°,菱形边长为2,所以OC=2,∠COB=60°.
如答图,过点C作CD⊥OB于点D,
则OD=OC·cos∠COB=2×cos60°=2×=1,CD=OC·sin∠COB=2×sin60°=2×=.
因为点C在第二象限,所以点C的坐标为(-1,).
因为顶点C在反比例函数y═的图象上,所以=,得k=,
所以反比例函数的解析式为y=,
因此本题选B.
【点拨】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标.
【对点练****2020湖北荆门模拟)如图,点A是反比例函数(x>0)的图象上任意一点,AB∥x轴交反比例函数的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为( )
A. 2 B.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档