下载此文档

人教版初中数学预测04 圆的综合(解析版).doc


初中 八年级 下学期 数学 人教版

1340阅读234下载35页2.73 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学预测04 圆的综合(解析版).doc
文档介绍:
预测04 圆的综合
圆的综合题是全国中考的热点内容,更是全国中考的必考内容!圆作为一个载体,常与三角形、四边形结合,难度系数中等。
1.从考点频率看,圆是高频考点,中考对圆的知识点考查,综合能力要求极高!
2.从题型角度看,以解答题为主,分值10分左右!

圆常见辅助线的作法
1:连接半径,构造等腰三角形
在圆的相关题目中,不要忽略隐含的已知条件,我们通常可以连接半径构造等腰三角形,从而利用等腰三角形的性质及圆中的相关定理。
2:遇弦添加弦心距或半径
根据垂径定理,连半径,可以构造直角三角形。设未知数,利用勾股定理列方程,求线段的长度。
3:构造同弧或等弧所对的圆心角或圆周角解题
在同一圆中,同弧或等弧所对的圆周角等于圆心角的一半。
在同一圆中,同弧或等弧所对的圆周角相等。
4:构造直角或直径
直径所对的圆周角是90°。
5:切线的性质有关的辅助线——添加过切点的半径
利用切线性质,可得半径与切线垂直
6:切线的判定有关的辅助线
有公共点,连半径,证垂直。(2)无公共点,作垂直,证明与半径相等。
7:与三角形内切圆有关的辅助线
遇到三角形的内切圆时,连接内心与三角形各顶点,利用内心的性质进行有关计算与证明。
1.(2019年湖南省常德市中考)如图,与的AC边相切于点C,与AB、BC边分别交于点D、E,,CE是的直径.
(1)求证:AB是的切线;
(2)若求AC的长.
2.(2019年福建省中考)如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.
(1)求证:∠BAC=2∠DAC;
(2)若AF=10,BC=4,求tan∠BAD的值.
3.(2019年河南中考)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.
(1)求证:△ADF≌△BDG;
(2)填空:
①若AB=4,且点E是的中点,则DF的长为__________;
②取的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.
4.(2019年湖北省黄石市中考)如图,是的直径,点在的延长线上,、是上的两点,,,延长交的延长线于点
(1)求证:是的切线;
(2)求证:
(3)若,,求弦的长.
5.(湖南省益阳市2019年中考)如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.
(1)判断四边形AMCD的形状,并说明理由;
(2)求证:ND=NE;
(3)若DE=2,EC=3,求BC的长.
6.(江苏省苏州市2019年中考)如图,AB为的直径,D是弧BC的中点BC与AD,OD分别交于点E,F
(1)求证:;
(2)求证:;
(3)若,求的值.
7.(2019年广东省中考)如图1,在中,,是的外接圆,过点作交于点,连接交于点,延长至点,使,连接.
(1)求证:;
(2)求证:是的切线;
(3)如图2,若点是的内心,,求的长.
1.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.
(1)求证:DF是⊙O的切线;
(2)已知BD=,CF=2,求DF和BG的长.
2.(2019年四川省成都市中考一模数学试题) 如图,为的直径,于,点是弧上的任一点,过点作的切线交于点.连接交于.
(1)求证:;
(2)填空:①当_____时,四边形是正方形;
②当_____时,四边形是菱形.
3.(黑龙江齐齐哈尔市2019届九年级中考一模考试数学试题).中,,点在上,,以直径作交于点,交于点,且点为切点,连接、.
(1)求证:平分:
(2)求阴影部分面积.(结果保留)
4.(2020年广东省初中学业水平考试数学模拟试题)如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)求证:△ABE∽△
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档