2021年福建省中考数学试卷 一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 在实数,,0,中,最小的数是( ) A. B. 0 C. D. 【答案】A 【解析】 【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小. 【详解】解:在实数,,0,中, ,为正数大于0, 为负数小于0, 最小的数是:. 故选:A. 【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来. 2. 如图所示的六角螺栓,其俯视图是( ) A. B. C. D. 【答案】A 【解析】 【分析】根据从上面看到的图形即可得到答案. 【详解】从上面看是一个正六边形,中间是一个圆, 故选:A. 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线. 3. 如图,某研究性学****小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得.据此,可求得学校与工厂之间的距离等于( ) A. B. C. D. 【答案】D 【解析】 【分析】解直角三角形,已知一条直角边和一个锐角,求斜边的长. 【详解】 , . 故选D. 【点睛】本题考查解直角三角形应用,掌握特殊锐角三角函数的值是解题关键. 4. 下列运算正确的是( ) A. B. C. D. 【答案】D 【解析】 【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案. 【详解】解:A:,故 A错误; B:,故 B错误; C:,故C错误; D:. 故选:D 【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键. 5. 某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表: 项目 作品 甲 乙 丙 丁 创新性 90 95 90 90 实用性 90 90 95 85 如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是( ) A. 甲 B. 乙 C. 丙 D. 丁 【答案】B 【解析】 【分析】利用加权平均数计算总成绩,比较判断即可 【详解】根据题意,得: 甲:90×60%+90×40%=90; 乙:95×60%+90×40%=93; 丙:90×60%+95×40%=92; 丁:90×60%+85×40%=88; 故选B 【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键. 6. 某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是( ) A. B. C. D. 【答案】B 【解析】 【分析】设年平均增长率为x,根据2020年底森林覆盖率=2018年底森林覆盖率乘,据此即可列方程求解. 【详解】解:设年平均增长率为x,由题意得: , 故选:B. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可. 7. 如图,点F在正五边形的内部,为等边三角形,则等于( ) A. B. C. D. 【答案】C 【解析】 【分析】根据多边形内角和公式可求出∠ABC的度数,根据正五边形的性质可得AB=BC,根据等边三角形的性质可得∠ABF=∠AFB=60°,AB=BF,可得BF=BC,根据角的和差关系可得出∠FBC的度数,根据等腰三角形的性质可求出∠BFC的度数,根据角的和差关系即可得答案. 【详解】∵是正五边形, ∴∠ABC==108°,AB=BC, ∵为等边三角形, ∴∠ABF=∠AFB=60°,AB=BF, ∴BF=BC,∠FBC=∠ABC-∠ABF=48°, ∴∠BFC==66°, ∴=∠AFB+∠BFC=126°, 故选:C. 【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键. 8. 如图,一次函数图象过点,则不等式的解集是( ) A.