下载此文档

人教版初中数学专题14 角平分线问题(解析版).docx


初中 八年级 下学期 数学 人教版

1340阅读234下载32页557 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题14 角平分线问题(解析版).docx
文档介绍:
专题14 角平分线问题
1.角的平分线定义:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.
类似地,还有角的三等分线等.
2.作角平分线
角平分线的作法(尺规作图)
①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;
②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;
③过点P作射线OP,射线OP即为所求.
  
3.角平分线的性质
(1)定理:角平分线上的点到角的两边的距离相等。
符号语言:∵OP平分∠AOB,AP⊥OA,BP⊥OB,∴AP=BP.
(2)逆定理:到角的两边距离相等的点在角的平分线上。
符号语言:∵ AP⊥OA,BP⊥OB,AP=BP,∴点P在∠AOB的平分线上.
注意:三角形的角平分线。三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:
如下图,AD是ΔABC的角平分线,或∠BAD=∠CAD且点D在BC上.
说明:AD是ΔABC的角平分线∠BAD=∠DAC=∠BAC (或∠BAC=2∠BAD=2∠DAC) .
(1)三角形的角平分线是线段;
(2)一个三角形有三条角平分线,并且都在三角形的内部;
(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;
(4)可以用量角器或圆规画三角形的角平分线.
4.角平分线的综合应用
(1)为推导线段相等、角相等提供依据和思路;
(2)在解决综合问题中的应用.
【例题1】(2020•襄阳)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是(  )
A.132° B.128° C.122° D.112°
【答案】C
【分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=12∠BEF=58°,由平行线的性质即可得到结论.
【解析】∵AB∥CD,∠EFG=64°,
∴∠BEF=180°﹣∠EFG=116°,
∵EG平分∠BEF交CD于点G,
∴∠BEG=12∠BEF=58°,
∵AB∥CD,
∴∠EGD=180°﹣∠BEG=122°.
【对点练****2020长春模拟 )如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为(  )
A.44° B.40° C.39° D.38°
【答案】C.
【解析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再用平行线的性质解答即可.
∵∠A=54°,∠B=48°,
∴∠ACB=180°﹣54°﹣48°=78°,
∵CD平分∠ACB交AB于点D,
∴∠DCB=78°=39°,
∵DE∥BC,
∴∠CDE=∠DCB=39°,
【点拨】本题考查三角形内角和定理、平行线性质、角平分线定义。
【例题2】(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为   .
【答案】30°.
【解析】先根据圆周角定理得到∠BAC=12∠BOC=60°,然后利用角平分线的定义确定∠CAD的度数.
∵∠BAC=12∠BOC=12×120°=60°,
而AD是∠BAC的角平分线,
∴∠CAD=12∠BAC=30°.
【对点练****2019四川自贡)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=  .
【答案】.
【解析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.
∵∠ACB=90°,AB=10,BC=6,
∴AC=8,
∵BD平分∠ABC,
∴∠ABE=∠CDE,
∵CD∥AB,
∴∠D=∠ABE,
∴∠D=∠CBE,
∴CD=BC=6,
∴△AEB∽△CED,
∴,
∴CE=AC=×8=3,
BE=,
DE=BE=×=
【点拨】本题考查相似三角形性质、勾股定理、角平分线性质。
【例题3】(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,O
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档