下载此文档

人教版题型七 综合实践题-2020年中考数学第二轮重难题型突破(解析版).doc


初中 九年级 下学期 数学 人教版

1340阅读234下载23页394 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版题型七 综合实践题-2020年中考数学第二轮重难题型突破(解析版).doc
文档介绍:
题型七 综合实践题
例1.【问题情境】
已知Rt△ABC中,∠BAC=90°,AB=AC,点E是线段AC上的一个动点(不与A、C重合),以CE为一边作Rt△DCE,使∠DCE=90°,且CD=CA.沿CA方向平移△CDE,使点C移动到点A,得到△ABF.过点F作FG⊥BC,交线段BC于点G,连接DG、EG.
【深入探究】
(1)如图①,当点E在线段AC上时,小文猜想GC=GF,请你帮他证明这一结论;
(2)如图②,当点E在线段AC的延长线上,且CE<CA时,猜想线段DG与EG的数量关系和位置关系,并证明你的猜想;
【拓展应用】
(3)如图③,将(2)中的“CE<CA”改为“CE>CA”,若设∠CDE=α,请用含α的式子表示∠CGE的度数(直接回答即可,不必证明).
第1题图
【答案】(1)证明:∵在Rt△BAC中,∠BAC=90°,AB=AC,
∴∠BCA=∠ABC=45°,
∵FG⊥BC,
∴∠FGC=90°,∴∠GFC=90°-∠GCF=45°,
∴∠GFC=∠GCF,
∴GC=GF;
(2)解:DG=EG,DG⊥EG;
证明:同(1)可证GC=GF,
∵∠DCE=90°,∠BCA=45°,
∴∠DCG=45°,
∵∠GFC=45°,
∴∠DCG=∠EFG,
∵△CDE平移得到△ABF,
∴CE=AF,∴CE+CF=AF+CF,即EF=AC,
∵AC=CD,∴EF=CD,∴△DCG≌△EFG(SAS),
∴DG=EG,∠DGC=∠EGF,
∴∠DGC-∠EGC=∠EGF-∠EGC,
即∠DGE=∠CGF=90°,
∴DG⊥EG;
(3)解:∠CGE=180°-α.
例2.在正方形ABCD中,BD是一条对角线,点P在直线CD上(不与点C、D重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.
【问题发现】
(1)如图①,若点P在线段CD上,AH与PH的数量关系是________,位置关系是________;
【拓展探究】
(2)如图②,若点P在线段CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明,否则说明理由;
【解决问题】
(3)若点P在线段DC的延长线上,且∠AHQ=120°,正方形ABCD的边长为2,请直接写出DP的长度.
第2题图
【答案】解:(1)AH=PH,AH⊥PH;
【解法提示】如解图①,连接HC,
第2题解图①
∵四边形ABCD是正方形,
∴∠BDC=45°,
又∵QH⊥BD,
∴△DHQ是等腰直角三角形,
∴HD=HQ,∠HDP=∠HQC=45°,
由平移的性质可知DP=CQ,
在△HDP和△HQC中,,
∴△HDP≌△HQC.
∴HP=HC,∠DHP=∠QHC.
根据正方形是轴对称图形得到HA=HC,∠AHD=∠CHD,
∴∠AHP=∠AHD+∠DHP=∠CHD+∠QHC=90°,即AH⊥PH.
∴HA=HP,AH⊥PH.
(2)(1)中的结论仍然成立,
理由如下:如解图②,连接HC,
第2题解图②
∵四边形ABCD是正方形,
∴∠BDC=45°,
又∵QH⊥BD,
∴△DHQ是等腰直角三角形,∴∠HDP=∠HQC=135°,HD=HQ,由平移的性质可知DP=CQ,
在△HDP和△HQC中,,
∴△HDP≌△HQC(SAS),
∴HP=HC,∠DHP=∠QHC,
根据正方形是轴对称图形得到HA=HC,∠AHD=∠CHD,
∴∠AHP=∠AHD-∠DHP=∠CHD-∠CHQ=90°,
∴HA=HP,AH⊥PH;
(3)DP=2.
【解法提示】由(1)知,AH=PH,AH⊥PH,
∴∠HPA=45°,
∵∠AHQ=120°,
∴∠PHQ=120°-90°=30°.
∴∠PHD=∠QHD-∠PHQ=60°,∠AHB=∠CHB=∠AHP-∠PHD=30°,
∴∠CHP=∠CHB=∠AHB=30°,
∴∠CPH==75°,
∴∠APD=∠CPH-∠APH=30°,在Rt△ADP中,AD=2,
∴DP==2.
例3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.
(1)如图①,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系;
(2)如图②,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档