下载此文档

人教版初中数学第10关 以二次函数与相似三角形问题为背景的解答题(解析版).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载57页1.79 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学第10关 以二次函数与相似三角形问题为背景的解答题(解析版).docx
文档介绍:
第十关 以二次函数与相似三角形问题为背景的解答题
【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学****二次函数与相似三角形的存在性问题是中考考试的一个热点。解决这类问题需要用到数形结合思想,把“数”与“形”结合起来,互相渗透.存在探索型问题是指在给定条件下,判断某种数学现象是否存在、某个结论是否出现的问题.解决这类问题的一般思路是先假设结论的某一方面存在,然后在这个假设下进行演绎推理,若推出矛盾,即可否定假设;若推出合理结论,则可肯定假设.
【解题思路】理解存在性问题的解题思路,根据已知角相等找出对应边成比例,存在性问题的知识覆盖面较广,综合性较强,解题方法灵活,对学生分析问题和解决问题的要求较高。一般思路是从存在的角度出发→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出不存在的判断.函数中因动点产生的相似三角形问题一般有三个解题途径:①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应边分类讨论;②利用已知三角形中对应角,在未知三角形中利用勾股定理/三角函数/对称/旋转等知识来推导边的大小;③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数关系式表示各边的长度,之后利用相似列方程求解.
【典型例题】
【例1】(2019·湖南中考真题)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)
(1)求点A、B的坐标;
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;
(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.
【答案】(1)点A坐标为(﹣4,﹣4),点B坐标为(﹣1,﹣2);(2)S△OA'M=8;(3)点D坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A、O、D为顶点的三角形与△OA'C相似.
【解析】
【分析】
(1)把x=﹣4代入解析式,求得点A的坐标,把y=-2代入解析式,根据点B与点A的位置关系即可求得点B的坐标;
(2)如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G,先求出点A'、B'的坐标,OA=OA'=,然后利用待定系数法求得抛物线F2解析式为:,对称轴为直线:,设M(6,m),表示出OM2,A'M2,进而根据OA'2+A'M2=OM2,得到(4)2+m2+8m+20=36+m2,求得m=﹣2,继而求得A'M=,再根据S△OA'M=OA'•A'M通过计算即可得;
(3)在坐标轴上存在点D,使得以A、O、D为顶点的三角形与△OA'C相似,先求得直线OA与x轴夹角为45°,再分点D在x轴负半轴或y轴负半轴时,∠AOD=45°,此时△AOD不可能与△OA'C相似,点D在x轴正半轴或y轴正半轴时,∠AOD=∠OA'C=135°(如图2、图3),此时再分△AOD∽△OA'C,△DOA∽△OA'C两种情况分别讨论即可得.
【详解】
(1)当x=﹣4时,,
∴点A坐标为(﹣4,﹣4),
当y=﹣2时,,
解得:x1=﹣1,x2=﹣6,
∵点A在点B的左侧,
∴点B坐标为(﹣1,﹣2);
(2)如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G,
∴∠BEO=∠OGB'=90°,OE=1,BE=2,
∵将△AOB绕点O逆时针旋转90°得到△A'OB',
∴OB=OB',∠BOB'=90°,
∴∠BOE+∠B'OG=∠BOE+∠OBE=90°,
∴∠B'OG=∠OBE,
在△B'OG与△OBE中

∴△B'OG≌△OBE(AAS),
∴OG=BE=2,B'G=OE=1,
∵点B'在第四象限,
∴B'(2,﹣1),
同理可求得:A'(4,﹣4),
∴OA=OA'=,
∵抛物线F2:y=ax2+bx+4经过点A'、B',
∴,
解得:,
∴抛物线F2解析式为:,
∴对称轴为直线:,
∵点M在直线x=6上,设M(6,m),
∴OM2=62+m2,A'M2=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档