下载此文档

人教版初中数学专题20 数据的分析(解析版).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载21页509 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题20 数据的分析(解析版).docx
文档介绍:
专题20 数据的分析
知识点1:数据的集中趋势
平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
(1)平均数有算术平均数和加权平均数
平均数的求法:=(x1+x2+…+xn);
加权平均数计算公式为:=(x1f1+x2f2+…+xkfk),其中f1,f2,…,fk代表各数据的权.
(2)中位数的求法
数据从大到小或从小到大排好顺序以后,若为偶数个数,就是最中间的两个数加起来除以2,即两个数的平均数;若为奇数个数,就是中间个数.
(3)众数:指一组数据中出现次数最多的数.
知识点2:数据的波动程度
1.极差: 用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
2.方差: 用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差。
方差公式为:s2=[(x1-)2+(x2-)2+…+(xn-)2],方差越小,数据越稳定.
本章内容要求学生在经历数据的收集、整理、分析过程中发展学生的统计意识和数据处理的方法与能力。在教学过程中,以生活实例为主,让学生体会到数据在生活中的重要性。
【例题1】(2020浙江嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是(  )
A.平均数是4 B.众数是3 C.中位数是5 D.方差是3.2
【答案】C
【解析】根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可.
样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,
方差是S2=[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.
【例题2】(2020浙江宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:



45
45
42
S2
1.8
23
1.8
明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.
【答案】甲
【解析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.
因为甲、乙的平均数比丙大,所以甲、乙的产量较高,
又甲的方差比乙小,所以甲的产量比较稳定,[来源:学科网ZXXK]
即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲。
【点拨】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.
【例题3】(2020浙江温州)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.
(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量;
(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.
【答案】(1)平均数,;(2)见解析
【解析】(1)根据平均数可以判断营业水平,根据数据求平均数即可
(2)根据平均数和方差综合分析即可
【详解】(1)选择两家酒店月营业额的平均数:


(2)A酒店营业额的平均数比B酒店的营业额的平均数大,且B酒店的营业额的方差小于A酒店,说明B酒店的营业额比较稳定,而从图像上看A酒店的营业额持续稳定增长,潜力大,说明A酒店经营状况好.
【点拨】此题考查平均数的求法和方差在数据统计中的应用.
《数据的分析》单元精品检测试卷
本套试卷满分120分,答题时间90分钟
一、选择题(每小题3分,共36分)
1.(2020浙江台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( )
A. 中位数 B. 众数 C. 平均数 D. 方差
【答案】A
【解析】根据中位数的定义即可判断.
∵小明成绩72分,超过班级半数同学的成绩,
由此可得所用的统计量是中位数。
2.(2
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档