下载此文档

人教版初中数学专题26 反比例函数(解析版).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载27页540 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题26 反比例函数(解析版).docx
文档介绍:
专题26 反比例函数
知识点一:反比例函数的定义
形如y=(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k
知识点二:反比例函数的图像和性质
1.图像:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

k>0 k<0
2.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
知识点三:反比例函数中反比例系数的几何意义
如图,过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=。
|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
在学****反比例函数时,教师可让学生对比之前所学****的一次函数启发学生进行对比性学****在做题时,培养和养成数形结合的思想。
1.反比例函数解析式的确定方法
确定解析式的方法是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
2.用函数的观点处理实际问题
关键在于分析实际情景,建立函数模型,并且进一步明确数学问题将实际问题置于已学的知识背景之中,用数学知识重新解释这是什么?可以看作什么?逐步形成考察实际问题的能力,在解决实际问题时,不仅要充分利用函数图象的性质,参透数形结合的思想,也要注意函数、不等式、方程之间的联系。生活中处处有数学。用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,因此同学们要学好物理,首先要打好数学基础,才能促进你对物理知识的理解和探索。
1.在工程与速度中的应用;
2.反比例函数在电学中的运用;
3.在光学中运用;
4.在排水方面的运用;
5.在解决经济预算问题中的应用;
6.其他方面的应用。
【例题1】(2020•滨州)如图,点A在双曲线y=4x上,点B在双曲线y=12x上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为(  )
A.4 B.6 C.8 D.12
【答案】C
【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
【解析】过A点作AE⊥y轴,垂足为E,
∵点A在双曲线y=4x上,
∴四边形AEOD的面积为4,
∵点B在双曲线线y=12x上,且AB∥x轴,
∴四边形BEOC的面积为12,
∴矩形ABCD的面积为12﹣4=8.
【例题2】(2020•常德)如图,若反比例函数y=kx(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=  .
【答案】﹣12.
【分析】根据反比例函数比例系数的几何意义即可解决问题.
【解析】∵AB⊥OB,
∴S△AOB=|k|2=6,
∴k=±12,
∵反比例函数的图象在二四象限,
∴k<0,
∴k=﹣12
【例题3】(2020•广东)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
(1)填空:k=  ;
(2)求△BDF的面积;
(3)求证:四边形BDFG为平行四边形.
【答案】见解析。
【分析】(1)设点B(s,t),st=8,则点M(12s,12t),则k=12s•12t=14st=2;
(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;
(3)确定直线DE的表达式为:y=-12m2x+52m,令y=0,则x=5m,故点F(5m,0),即可求解.
【解析】(1)设点B(s,t),st=8,则点M(12s,12t),
则k=12s•12t=14st=2,
故答案为2;
(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=12×8-12×2=3;
(3)设点D(m,2m),则点B(4m,2m),
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档