下载此文档

人教版初中数学考前必刷03(解析版).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载9页337 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学考前必刷03(解析版).docx
文档介绍:
考前必刷03
选择题:
1、下列整数中,与最接近的是
A. 4 B. 5 C. 6 D. 7
【答案】C
【解析】
【分析】[来源:学&科&网]
由于9<<16,可判断与4最接近,从而可判断与10−最接近的整数为6.
【详解】解:∵12.25<<16,
∴3.5<<4,
∴与最接近的是4,
∴与10−最接近的是6.
故选C.
【点睛】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.
2、如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于(  )
A.55° B.70° C.110° D.125°
【解答】解:连接OA,OB,
∵PA,PB是⊙O的切线,
∴PA⊥OA,PB⊥OB,
∵∠ACB=55°,
∴∠AOB=110°,
∴∠APB=360°﹣90°﹣90°﹣110°=70°.
故选:B.
3、如图,PA、PB是的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=_________°.
【答案】219
【解析】
【分析】
连接AB,根据切线的性质得到PA=PB,根据等腰三角形的性质得到∠PAB=∠PBA=(180°−102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.
【详解】解:连接AB,
∵PA、PB是⊙O的切线,[来源:Z§xx§k.Com]
∴PA=PB,
∵∠P=102°,
∴∠PAB=∠PBA=(180°−102°)=39°,
∵∠DAB+∠C=180°,
∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,
故答案为219°.
【点睛】本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.
4、如图,菱形的对角线,交于点,,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为( )
A. B. C. D.
【答案】C
【解析】
【分析】
由菱形性质得到AO,BO长度,然后在利用勾股定理解出即可
【详解】由菱形的性质得
为直角三角形
故选C
【点睛】本题主要考查直角三角形勾股定理以及菱形的性质,本题关键在于利用菱形性质求出直角三角形的两条边
5、如图,半径为3的⊙A经过原点O和点C (0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为(  )
A. B.2 C. D.

【解答】解:作直径CD,
在Rt△OCD中,CD=6,OC=2,
则OD==4,
tan∠CDO==,
由圆周角定理得,∠OBC=∠CDO,
则tan∠OBC=,[来源:学*科*网Z*X*X*K]
故选:D.
填空题:
6、如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是
【解答】解:连接OA、OE、OB,OB交DE于H,如图,
∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴OA平
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档