下载此文档

专题12二次函数图象性质与应用问题(共38题)-备战2023年中考数学必刷真题考点分类专练(人教版)【解析版】.docx


初中 七年级 上学期 数学 人教版

1340阅读234下载38页371 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题12二次函数图象性质与应用问题(共38题)-备战2023年中考数学必刷真题考点分类专练(人教版)【解析版】.docx
文档介绍:
学科网(北京)股份有限公司
备战2023年中考数学必刷真题考点分类专练(全国通用)
专题12二次函数图象性质与应用问题
一.选择题(共23小题)
1.(2022•新疆)已知抛物线y=(x﹣2)2+1,下列结论错误的是(  )
A.抛物线开口向上
B.抛物线的对称轴为直线x=2
C.抛物线的顶点坐标为(2,1)
D.当x<2时,y随x的增大而增大
【分析】根据抛物线a>0时,开口向上,a<0时,开口向下判断A选项;根据抛物线的对称轴为x=h判断B选项;根据抛物线的顶点坐标为(h,k)判断C选项;根据抛物线a>0,x<h时,y随x的增大而减小判断D选项.
【解析】A选项,∵a=1>0,
∴抛物线开口向上,故该选项不符合题意;
B选项,抛物线的对称轴为直线x=2,故该选项不符合题意;
C选项,抛物线的顶点坐标为(2,1),故该选项不符合题意;
D选项,当x<2时,y随x的增大而减小,故该选项符合题意;
故选:D.
【点评】本题考查了二次函数的性质,掌握抛物线a>0,x<h时,y随x的增大而减小,x>h时,y随x的增大而增大;a<0时,x<h时,y随x的增大而增大,x>h时,y随x的增大而减小是解题的关键.
2.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是(  )
A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y2<y3<y1
【分析】先求出抛物线的对称轴为直线x=1,由于﹣1<x1<0,1<x2<2,x3>3,于是根据二次函数的性质可判断y1,y2,y3的大小关系.
【解析】抛物线的对称轴为直线x=﹣=1,
∵﹣1<x1<0,1<x2<2,x3>3,
而抛物线开口向上,
∴y2<y1<y3.
学科网(北京)股份有限公司
故选B.
【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.确定x1,x2,x3离对称轴的远近是解决本题的关键.
3.(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为(  )
A.1 B. C.2 D.
【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c=2.
【解析】∵点A(a,b),B(4,c)在直线y=kx+3上,
∴,
由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,
∵ab的最大值为9,
∴k<0,﹣=9,
解得k=﹣,
把k=﹣代入②得:4×(﹣)+3=c,
∴c=2,
故选:C.
【点评】本题考查一次函数图象上点坐标的特征及二次函数的最值,解题的关键是掌握配方法求函数的最值.
4.(2022•宁波)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m的取值范围为(  )
A.m>2 B.m> C.m<1 D.<m<2
【分析】根据y1<y2列出关于m的不等式即可解得答案.
【解析】∵点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上,
∴y1=(m﹣1﹣1)2+n=(m﹣2)2+n,
y2=(m﹣1)2+n,
学科网(北京)股份有限公司
∵y1<y2,
∴(m﹣2)2+n<(m﹣1)2+n,
∴(m﹣2)2﹣(m﹣1)2<0,
即﹣2m+3<0,
∴m>,
故选:B.
【点评】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.本题属于基础题,难度不大.
5.(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x
﹣2
﹣1
0
1
y
0
4
6
6
下列结论不正确的是(  )
A.抛物线的开口向下
B.抛物线的对称轴为直线x=
C.抛物线与x轴的一个交点坐标为(2,0)
D.函数y=ax2+bx+c的最大值为
【分析】根据表格中的数据,可以求出抛物线的解析式,然后化为顶点式和交点式,即可判断各个选项中的说法是否正确.
【解析】由表格可得,

解得,
∴y=﹣x2+x+6=﹣(x﹣)2+=(﹣x+3)(x+2),
∴该抛物线的开口向下,故选项A正确,不符合题意;
该抛物线的对称轴是直线x=,故选项B正确,不符合题意,
∵当x=﹣2时,y=0,
学科网(北京)股份有限公司
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档