下载此文档

人教版精品解析:湖南省常德市2021年中考数学试卷(解析版).doc


初中 八年级 下学期 数学 人教版

1340阅读234下载25页1.16 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版精品解析:湖南省常德市2021年中考数学试卷(解析版).doc
文档介绍:
湖南省常德市2021年中考数学试卷
一、选择题
1. 4的倒数是( )
A. B. 2 C. 1 D.
【答案】A
【解析】
【分析】根据互为倒数的两个数的乘积是1,求出4的倒数是多少即可.
【详解】解:4的倒数是:
1÷4=.
故选:A.
【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
2. 若,下列不等式不一定成立的是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据不等式的性质逐项进行判断即可得到答案.
【详解】解:A.在不等式两边同时减去5,不等式仍然成立,即,故选项A不符合题意;
B. 在不等式两边同时除以-5,不等号方向改变,即,故选项B不符合题意;
C.当c≤0时,不等得到,故选项C符合题意;
D. 在不等式两边同时加上c,不等式仍然成立,即,故选项D不符合题意;
故选:C.
【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.
3. 一个多边形的内角和是1800°,则这个多边形是(  )边形.
A. 9 B. 10 C. 11 D. 12
【答案】D
【解析】
【分析】根据n边形的内角和是(n﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n的方程,从而求出边数.
【详解】根据题意得:(n﹣2)×180=1800,
解得:n=12.
故选:D.
【点睛】此题主要考查多边形的内角和,解题的关键是熟知n边形的内角和是(n﹣2)×180 .
4. 下列计算正确的是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可直接进行排除选项.
【详解】A、原计算错误,该选项不符合题意;
B、原计算错误,该选项不符合题意;
C、原计算错误,该选项不符合题意;
D、正确,该选项符合题意;
故选:D.
【点睛】本题主要考查了同底数幂的乘除法、幂的乘方及合并同类项,熟练掌握同底数幂的乘除法、幂的乘方及合并同类项是解题的关键.
5. 舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是( )
A. ②→③→①→④ B. ③→④→①→②
C. ①→②→④→③ D. ②→④→③→①
【答案】D
【解析】
【分析】根据数据的收集、整理、制作拆线统计图及根据统计图分析结果的步骤可得答案.
【详解】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:
②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;
④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.
③按统计表的数据绘制折线统计图;
①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;
所以,正确统计步骤的顺序是②→④→③→①
故选:D.
【点睛】本题考查拆线统计图、频数分布表,解答本题的关键是明确制作频数分布表和拆线统计图的制作步骤
6. 计算:( )
A. 0 B. 1 C. 2 D.
【答案】C
【解析】
【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.
详解】解:
=
=
=2.
故选:C.
【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.
7. 如图,已知F、E分别是正方形的边与的中点,与交于P.则下列结论成立的是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据正方形的性质,全等三角形的判定和性质以及等腰三角形的性质逐一判断即可.
【详解】解:∵四边形ABCD是正方形,
∴AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,
∵已知F、E分别是正方形ABCD的边AB与BC的中点,
∴BE=BC=AB<AE,故A选项错误,不符合题意;
在△ABE和△DAF中,

∴△ABE≌△DAF(SAS),
∴∠BAE=∠ADF,
∵∠ADF+∠AFD=90°,
∴∠BAE+∠AFD =90°,
∴∠APF=90°,
∴∠EAF+∠AFD=90°,故
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档