下载此文档

人教版精品解析:青海省2020年中考数学试题(解析版).doc


初中 八年级 下学期 数学 人教版

1340阅读234下载28页2.28 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版精品解析:青海省2020年中考数学试题(解析版).doc
文档介绍:
青海省2020年初中毕业升学考试数学试卷
一、填空题
1. (-3+8)的相反数是________;的平方根是________.
【答案】 (1). (2).
【解析】
【分析】
第1空:先计算-3+8值,根据相反数的定义写出其相反数;
第2空:先计算的值,再写出其平方根.
【详解】第1空:∵,则其相反数为:
第2空:∵,则其平方根为:
故答案为:,.
【点睛】本题考查了相反数,平方根,熟知相反数,平方根知识是解题的关键.
2. 分解因式:________;不等式组的整数解为________.
【答案】 (1). (2).
【解析】
【分析】
综合利用提取公因式法和公式法即可得;先分别求出两个不等式的解,再找出它们的公共部分得出不等式组的解集,由此即可得出答案.
【详解】

解不等式①得
解不等式②得
则不等式组的解为
因此,不等式组的整数解
故答案为:,.
【点睛】本题考查了利用提取公因式法和公式法分解因式、求一元一次不等式组的整数解,熟练掌握因式分解的方法和一元一次不等式组的解法是解题关键.
3. 岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为________米(1纳米米)
【答案】
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:将数据125纳米用科学记数法表示为:125×10-9米=1.25×10-7米.
故答案为:.
【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4. 如图,将周长为8的沿BC边向右平移2个单位,得到,则四边形的周长为________.
【答案】12
【解析】
【分析】
先根据平移的性质可得,再根据三角形的周长公式可得,然后根据等量代换即可得.
【详解】由平移的性质得:
的周长为8
则四边形ABFD的周长为
故答案为:12.
【点睛】本题考查了平移的性质等知识点,掌握理解平移的性质是解题关键.
5. 如图所示ΔABC中,AB=AC=14cm,AB的垂直平分线MN交AC于D,ΔDBC的周长是24cm,则BC=___________cm.
【答案】10
【解析】
【分析】
由MN是AB的垂直平分线可得AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.
【详解】∵,
∴BD+DC+BC=24cm,
∵MN垂直平分AB,
∴AD=BD,
∴AD+DC+BC=24cm,
即AC+BC=24cm,
又∵AC=14cm,
∴BC=24-14=10cm.
故答案为:10
点睛:解答本题的关键是熟练掌握垂直平分线的性质:垂直平分线上的点到线段两端的距离相等.此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用.
6. 如图,在矩形中,对角线,相交于点,已知,,则的长为________cm.
【答案】6cm
【解析】
【分析】
根据矩形的性质可得对角线相等且平分,由可得,根据所对直角边是斜边的一半即可得到结果.
【详解】∵四边形ABCD是矩形,
∴,,,,
∵,
∴,
又∵,
∴,
∴在Rt△ABC中,.
故答案为6cm.
【点睛】本题主要考查了矩形的性质应用,准确利用直角三角形的性质是解题的关键.
7. 已知a,b,c为的三边长.b,c满足,且a为方程的解,则的形状为________三角形.
【答案】等腰三角形
【解析】
【分析】
根据绝对值和平方的非负性可得到b、c的值,再根据式子解出a的值,即可得出结果.
【详解】∵,
∴,,
∴,,
又∵,
∴,,
∵a是方程的解且a,b,c为的三边长,
∴,
∴是等腰三角形.
【点睛】本题主要考查了根据三角形三边判断三角形的性质,准确求解题中的式子是解题的关键.
8. 在解一元二次方程时,小明看错了一次项系数,得到的解为,;小刚看错了常数项,得到的解为,.请你写出正确的一元二次方程_________.
【答案】
【解析】
【分析】
根据题意列出二元一次方程组
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档