下载此文档

专题31 特殊平行四边形【考点精讲】-【人教版】备战2022年中考数学考点总复习(全国通用)(解析版).docx


初中 八年级 下学期 数学 人教版

1340阅读234下载23页865 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题31 特殊平行四边形【考点精讲】-【人教版】备战2022年中考数学考点总复习(全国通用)(解析版).docx
文档介绍:
学科网(北京)股份有限公司
专题31 特殊平行四边形

知识导航
知识精讲
考点1:菱形的性质与判定
1.定义:一组邻边相等的平行四边形叫做菱形.
2.性质:菱形的四条边相等,两条对角线互垂直平分,且每一条对角线平分一组对角. 
3.判定方法:
①一组邻边相等的平行四边形是菱形; 
②对角线互相垂直的平行四边形是菱形; 
③四条边都相等的四边形是菱形. 
4.设菱形对角线长分别为l1,l2,则S菱形=l1l2.

【例1】(2021·广东)下列命题中,为真命题的是( )
(1)对角线互相平分的四边形是平行四边形
(2)对角线互相垂直的四边形是菱形
(3)对角线相等的平行四边形是菱形
(4)有一个角是直角的平行四边形是矩形
A.(1)(2) B.(1)(4) C.(2)(4) D.(3)(4)
【答案】B
【分析】
正确的命题叫真命题,根据定义解答.
【详解】
学科网(北京)股份有限公司
解:对角线互相平分的四边形是平行四边形,故(1)是真命题;
对角线互相垂直的平行四边形是菱形,故(2)不是真命题;
对角线相等的平行四边形是矩形,故(3)不是真命题;
有一个角是直角的平行四边形是矩形,故(4)是真命题;
故选:B.
【例2】(2021·辽宁)如图,在中,点O是的中点,连接并延长交的延长线于点E,连接、.
(1)求证:四边形是平行四边形;
(2)若,判断四边形的形状,并说明理由.
【答案】(1)证明见详解;(2)四边形ACDE是菱形,理由见详解.
【分析】
(1)利用平行四边形的性质,即可判定,即可得到,再根据CD∥AE,即可证得四边形ACDE是平行四边形;
(2)利用(1)的结论和平行四边形的性质可得AC=CD,由此即可判定是菱形.
【详解】
(1)证明:在ABCD中,AB∥CD,
∴,
∵点O为AD的中点,
∴,
在与中,
∵,


学科网(北京)股份有限公司
∴,
∴,
又∵BE∥CD ,
∴四边形ACDE是平行四边形;
(2)解:由(1)知四边形ACDE是平行四边形,,
∵,
∴,
∴四边形ACDE是菱形.
方法技巧
菱形的证明方法(三种)
①先证明四边形ABCD为平行四边形,再证明平行四边形ABCD的任一组邻边相等.
②先证明四边形ABCD为平行四边形,再证明平行四边形ABCD的对角线互相垂直.
③证明四边形ABCD的四条边相等.
针对训练
1.(2021·四川成都市·中考真题)如图,四边形是菱形,点E,F分别在边上,添加以下条件不能判定的是( )
A. B. C. D.
【答案】C
【分析】
根据三角形全等判定定理SAS可判定A,三角形全等判定定理AAS可判定B,三角形全等判定定理可判定C,三角形全等判定定理AAS可判定D即可.
【详解】
解: ∵四边形是菱形,
学科网(北京)股份有限公司
∴AB=AD,∠B=∠D,
A. 添加可以,
在△ABE和△ADF中,

∴(SAS),
故选项A可以;
B.添加 可以,
在△ABE和△ADF中

∴(AAS);
故选项B可以;
C. 添加不可以,条件是边边角故不能判定;
故选项C不可以;
D. 添加可以,
在△ABE和△ADF中

∴(SAS).
故选项D可以;
故选择C.
2.(2021·辽宁鞍山)如图,在中,G为BC边上一点,,延长DG交AB的延长线于点E,过点A作交CD的延长线于点F.求证:四边形AEDF是菱形.
学科网(北京)股份有限公司
【答案】见解析
【分析】
先证四边形AEDF是平行四边形,再证,则,即可得出结论.
【解析】
证明:四边形ABCD是平行四边形,
,,,

四边形AEDF是平行四边形,






平行四边形AEDF是菱形.
3.(2021·山东滨州·中考真题)如图,矩形ABCD的对角线AC、BD相交于点O,,.
(1)求证:四边形AOBE是菱形;
(2)若,,求菱形AOBE的面积.
【答案】(1)证明过程见解答;(2)
【分析】
(1)根据BE∥AC,AE∥BD,可以得到四边形AOBE是平行四边形,然后根据矩形的性质,可以得到OA=OB,由菱形的定义可以得到结论成立;
学科网(北京)股份有限
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档