下载此文档

专题34 与圆有关的位置关系【专题巩固】-【人教版】备战2022年中考数学考点总复习(全国通用)(解析版).docx


初中 八年级 下学期 数学 人教版

1340阅读234下载15页708 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题34 与圆有关的位置关系【专题巩固】-【人教版】备战2022年中考数学考点总复习(全国通用)(解析版).docx
文档介绍:
专题34 与圆有关的位置关系
考点1:点、直线和圆的位置关系
1.(2021·陕西中考真题)如图,正方形的边长为4,的半径为1.若在正方形内平移(可以与该正方形的边相切),则点A到上的点的距离的最大值为______.
【答案】
【分析】
由题意易得当与BC、CD相切时,切点分别为F、G,点A到上的点的距离取得最大,进而根据题意作图,则连接AC,交于点E,然后可得AE的长即为点A到上的点的距离为最大,由题意易得,则有△OFC是等腰直角三角形,,根据等腰直角三角形的性质可得,最后问题可求解.
【详解】
解:由题意得当与BC、CD相切时,切点分别为F、G,点A到上的点的距离取得最大,如图所示:
连接AC,OF,AC交于点E,此时AE的长即为点A到上的点的距离为最大,如图所示,
∵四边形是正方形,且边长为4,
∴,
∴△OFC是等腰直角三角形,,
∵的半径为1,
∴,
∴,
∴,
∴,
即点A到上的点的距离的最大值为;
故答案为.
考点2:切线的性质与判定
2.(2021·福建中考真题)如图,为的直径,点P在的延长线上,与相切,切点分别为C,D.若,则等于( )
A. B. C. D.
【答案】D
【分析】
连接OC,CP,DP是⊙O的切线,根据定理可知∠OCP=90°,∠CAP=∠PAD,利用三角形的一个外角等于与其不相邻的两个内角的和可求∠CAD=∠COP,在Rt△OCP中求出即可.
【详解】
解:连接OC,
CP,DP是⊙O的切线,则∠OCP=90°,∠CAP=∠PAD,
∴∠CAD=2∠CAP,
∵OA=OC
∴∠OAC=∠ACO,
∴∠COP=2∠CAO
∴∠COP=∠CAD

∴OC=3
在Rt△COP中,OC=3,PC=4
∴OP=5.
∴==
故选:D.
3.(2021·山西中考真题)如图,在中,切于点,连接交于点,过点作交于点,连接.若,则为( )
A. B. C. D.
【答案】B
【分析】
连接,根据与相切易得,在中,已知,可以求出的度数,根据同弧所对的圆周角是圆心角的一半得出的度数,最后根据可得.
【详解】
如下图,连接,
∵切于点,
∴,
在中,
∵,
∴,
∴,
又∵,
∴.
故选:B.
4.(2021·北京中考真题)如图,是的切线,是切点.若,则______________.
【答案】130°
【分析】
由题意易得,然后根据四边形内角和可求解.
【详解】
解:∵是的切线,
∴,
∴由四边形内角和可得:,
∵,
∴;
故答案为130°.
5.(2021·浙江杭州市·中考真题)如图,已知的半径为1,点是外一点,且.若是的切线,为切点,连接,则_____.
【答案】
【分析】
根据圆的切线的性质,得,根据圆的性质,得,再通过勾股定理计算,即可得到答案.
【详解】
∵是的切线,为切点


∵的半径为1


故答案为:.
6.(2021·浙江宁波市·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C,D,延长交于点P.若,的半径为,则图中
的长为________.(结果保留)
【答案】
【分析】
连接OC、OD,利用切线的性质得到,根据四边形的内角和求得,再利用弧长公式求得答案.
【详解】
连接OC、OD,
∵分别与相切于点C,D,
∴,
∵,,
∴,
∴的长=(cm),
故答案为:.

7.(2021·四川凉山彝族自治州·中考真题)如图,在中,,AE 平分交BC于点E,点D在AB上,.是的外接圆,交AC于点F.
(1)求证:BC是的切线;
(2)若的半径为5,,求.
【答案】(1)见解析;(2)20
【分析】
(1)连接OE,由OA=OE,利用等边对等角得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行,得到AC与OE平行,再根据两直线平行同位角相等及∠C为直角,得到OE与BC垂直,可得出BC为圆O的切线;
(2)过E作EG垂直于OD,利用AAS得出△ACE≌△AGE,得到AC=AG=8,从而可得OG,利用勾股定理求出EG,再利用三角形面积公式可得结果.
【详解】
解:(1)证明:连接OE,
∵OA=OE,
∴∠1=∠3,
∵AE平分∠BAC,
∴∠1=∠2,
∴∠2=∠3,
∴OE∥AC,
∴∠OEB=∠C=90°,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档