下载此文档

人教版专题30第6章四边形之构造平行四边形备战2021中考数学解题方法系统训练(全国通用)(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载30页919 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题30第6章四边形之构造平行四边形备战2021中考数学解题方法系统训练(全国通用)(解析版).doc
文档介绍:
30第6章四边形之构造平行四边形
一、单选题
1.如图,菱形的边长为13,对角线,点E、F分别是边、的中点,连接并延长与的延长线相交于点G,则( )
A.13 B.10 C.12 D.5
【答案】B
【分析】连接对角线BD,交AC于点O,求证四边形BDEG是平行四边形,EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.
【详解】连接BD,交AC于点O,
由题意知:菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,
∴AB=BC=CD=DA=13, EFBD,
∵AC、BD是菱形的对角线,AC=24,
∴AC⊥BD,AO=CO=12,OB=OD,
又∵ABCD,EFBD
∴DEBG,BDEG
在四边形BDEG中,
∵DEBG,BDEG
∴四边形BDEG是平行四边形
∴BD=EG
在△COD中,
∵OC⊥OD,CD=13,CO=12
∴OD=OB=5
∴BD=EG=10
故选B.
【点评】本题主要考查了菱形的性质,平行四边形的性质及勾股定理,熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.
2.在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为( )s时,以A,F,C,E为顶点的四边形是平行四边形?( )
A.2 B.3 C.6 D.2或6
【答案】D
【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.
【详解】①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BC-BF=6-2t(cm),
∵AG∥BC,
∴当AE=CF时,四边形AECF是平行四边形,
即t=6-2t,
解得:t=2;
②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BF-BC=2t-6(cm),
∵AG∥BC,
∴当AE=CF时,四边形AEFC是平行四边形,
即t=2t-6,
解得:t=6;
综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.
故选D.
【点评】本题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.
3.如图,在中,,,点、分别是边及延长线上的动点,且,连接,交于点,过点作交于点,设,,则下列能反映与之间函数关系的大致图象是( )
A. B. C. D.
【答案】C
【分析】过点作交于点,证明与均为等腰直角三角形,得到, ,从而证明 ,得到,,根据,再利用中,,,求出,得到 ,故函数图象是平行于轴的直线的一部分,即可判断.
【详解】∵,,
∴为等腰直角三角形,
∴,,
如解图,过点作交于点,
∴,
∴为等腰直角三角形,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
在等腰中,,,
∴,
∴,
在中,,,
∴,
∴,
∴其图象是平行于轴的直线的一部分,
故选C.
【点评】此题主要考查函数图像与几何综合,解题的关键是熟知平行四边形、等腰直角三角形的性质、全等三角形的判定与性质及勾股定理的运用.
二、填空题
4.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积是_____.
【答案】8
【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×hCF的值即可.
【详解】连接DE、EC,过A作AM∥BC交FE的延长线于M,
∵四边形CDEF是平行四边形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四边形ACFM是平行四边形,
∵△BDE边DE上的高和△CDE的边DE上的高相同,
∴△BDE的面积和△CDE的面积相等,
同理△ADE的面积和△AME的面积相等,
即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×hCF,
∵△ABC的面积是24,BC=3CF
∴BC×hBC=×3CF×hCF=24,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档