下载此文档

人教版专题32第6章四边形之正方形与45度的基本图备战2021中考数学解题方法系统训练(全国通用)(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载51页2.14 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题32第6章四边形之正方形与45度的基本图备战2021中考数学解题方法系统训练(全国通用)(解析版).doc
文档介绍:
32第6章四边形之正方形与45度的基本图
一、单选题
1.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①AG+EC=GE;②;③的周长是一个定值;④连结FC,的面积等于.在以上4个结论中,正确的是( )
A.1 B.2 C.3 D.4
【答案】D
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定,再由,从而判断①,由对折可得: 由,可得:从而可判断②, 设 则利用三角形的周长公式可判断③,如图,连接 证明是直角三角形,从而可判断④,从而可得本题的结论.
【详解】解:由正方形与折叠可知,
DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,

∴,


故①正确;
由对折可得:




故②正确;



所以:的周长是一个定值,
故③正确,
如图,连接
由对折可得:






故④正确.
综上:①②③④都正确.
故选
【点评】本题考查的是正方形的性质,三角形全等的判定与性质,轴对称的性质,直角三角形的判定,掌握以上知识是解题的关键.
2.如图,在正方形OABC中,点B的坐标是(6,6),点E、F分别在边BC、BA上,OE=3.若∠EOF=45°,则F点的纵坐标是 (   )
A.2 B. C. D.-1
【答案】A
【分析】如图,连接EF,延长BA使得AM=CE,则△OCE≌△OAM.先证明△OFE≌△FOM,推出EF=FM=AF+AM=AF+CE,设AF=x,在Rt△EFB中利用勾股定理列出方程即可解决问题.
【详解】如图,连接EF,延长BA,使得AM=CE,
∵OA=OC,∠OCE=∠AOM,
∴△OCE≌△OAM(SAS).
∴OE=OM,∠COE=∠MOA,
∵∠EOF=45°,
∴∠COE+∠AOF=45°,
∴∠MOA+∠AOF=45°,
∴∠EOF=∠MOF,
在△OFE和△OFM中,

∴△OFE≌△FOM(SAS),
∴EF=FM=AF+AM=AF+CE,
设AF=,
∵CE=,
∴EF=,EB=3,,
∴()2=32+()2,
∴,
∴点F的纵坐标为,
故选:A
【点评】本题考查了正方形的性质、坐标与图形、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.
3.如图,在正方形有中,是上的动点,(不与、重合),连结,点关于的对称点为,连结并延长交于点,连接,过点作⊥交的延长线于点,连接,那么些的值为( )
A.1 B. C. D.2
【答案】B
【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
【详解】如图,在线段AD上截取AM,使AM=AE,

∵AD=AB,
∴DM=BE,
∵点A关于直线DE的对称点为F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵,
∴Rt△DFG≌Rt△DCG(HL),
∴∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵,
∴△DME≌△EBH(SAS),
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴,
∴ ,即.
故选:B.
【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
4.如图,在正方形内作,交于点,交于点,连接,过点作,垂足为点,将绕点顺时针旋转得到,若,则以下结论:①,②,③,④,正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】利用正方形的性质与旋转的性质证明再证明判断①,利用全等三角形的性质与勾股定理先求解正方形的边长,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档