下载此文档

人教版专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载215页12.22 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc
文档介绍:
专题40三角形(5)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、解答题
1.(2020·江苏南通?中考真题)(了解概念)
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
(理解运用)
(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;
(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;
(拓展提升)
(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.
【答案】(1);(2)四边形ABCD是对余四边形,证明见解析;(3)u=(0<t<4).
【解析】
【分析】
(1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin∠CAD的值.
(2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD为对余四边形.
(3)过点D作DH⊥x轴于点H,先证明△ABE∽△DBA,得出u与AD的关系,设D(x,t),再利用(2)中结论,求出AD与t的关系即可解决问题.
【详解】
解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.
∵AC=AB,
∴BE=CE=3,
在Rt△AEB中,AE=,
∵CF⊥AD,
∴∠D+∠FCD=90°,
∵∠B+∠D=90°,
∴∠B=∠DCF,
∵∠AEB=∠CFD=90°,
∴△AEB∽△DFC,
∴,
∴,
∴CF=,
∴sin∠CAD=.
(2)如图②中,结论:四边形ABCD是对余四边形.
理由:过点D作DM⊥DC,使得DM=DC,连接CM.
∵四边形ABCD中,AD=BD,AD⊥BD,
∴∠DAB=∠DBA=45°,
∵∠DCM=∠DMC=45°,
∵∠CDM=∠ADB=90°,
∴∠ADC=∠BDM,
∵AD=DB,CD=DM,
∴△ADC≌△BDM(SAS),
∴AC=BM,
∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,
∴CM2+CB2=BM2,
∴∠BCM=90°,
∴∠DCB=45°,
∴∠DAB+∠DCB=90°,
∴四边形ABCD是对余四边形.
(3)如图③中,过点D作DH⊥x轴于H.
∵A(﹣1,0),B(3,0),C(1,2),
∴OA=1,OB=3,AB=4,AC=BC=,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∴∠CBA=∠CAB=45°,
∵四边形ABCD是对余四边形,
∴∠ADC+∠ABC=90°,
∴∠ADC=45°,
∵∠AEC=90°+∠ABC=135°,
∴∠ADC+∠AEC=180°,
∴A,D,C,E四点共圆,
∴∠ACE=∠ADE,
∵∠CAE+∠ACE=∠CAE+∠EAB=45°,
∴∠EAB=∠ACE,
∴∠EAB=∠ADB,
∵∠ABE=∠DBA,
∴△ABE∽△DBA,
∴,

∴u=,
设D(x,t),
由(2)可知,BD2=2CD2+AD2,
∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,
整理得(x+1)2=4t﹣t2,
在Rt△ADH中,AD=,
∴u==(0<t<4),
即u=(0<t<4).
【点睛】
本题属于四边形综合题,考查了对余四边形的定义,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
2.(2020·江苏南通?中考真题)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
(1)如图①,若点P恰好在边BC上,连接AP,求的值;
(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.
【答案】(1);(2)BF=3.
【解析】
【分析】
(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.
(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4-x.证明△EGP∽△PHD,推出,推出PG=2EG=3x,D
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档