下载此文档

人教版专题55图形的相似(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载212页10.10 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题55图形的相似(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc
文档介绍:
专题55图形的相似(3)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2020·浙江绍兴?中考真题)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为(  )
A.20cm B.10cm C.8cm D.3.2cm
【答案】A
【解析】
【分析】
根据对应边的比等于相似比列式进行计算即可得解.
【详解】
解:设投影三角尺的对应边长为xcm,
∵三角尺与投影三角尺相似,
∴8:x=2:5,
解得x=20.
故选:A.
【点睛】
本题主要考查了位似变换的应用.
2.(2020·贵州遵义?中考真题)如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为(  )
A.9 B.12 C.15 D.18
【答案】D
【解析】
【分析】
由得到相似三角形,利用相似三角形的性质得到三角形之间的面积关系,利用反比例函数系数的几何意义可得答案.
【详解】
解:


四边形MNQP的面积为3,







故选D.
【点睛】
本题考查的是相似三角形的判定与性质,反比例函数系数的几何意义,掌握以上知识是解题的关键.
3.(2020·浙江嘉兴?中考真题)如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C坐标(  )
A.(﹣1,﹣1) B.(﹣,﹣1) C.(﹣1,﹣) D.(﹣2,﹣1)
【答案】B
【解析】
【分析】
根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以即可.
【详解】
解:∵以点O为位似中心,位似比为,
而A (4,3),
∴A点的对应点C的坐标为(,﹣1).
故选:B.
【点睛】
本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
4.(2020·重庆中考真题)如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段
DF的长度为( )
A. B.2 C.4 D.
【答案】D
【解析】
【分析】
把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.
【详解】
解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,
而A(1,2),C(3,1),
∴D(2,4),F(6,2),
∴DF==,
故选:D.
【点睛】
本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.
5.(2020·四川成都?中考真题)如图,直线,直线和被,,所截,,,,则的长为( )
A.2 B.3 C.4 D.
【答案】D
【解析】
【分析】
根据平行线分线段成比例定理得出比例式,代入已知线段得长度求解即可.
【详解】
解:∵直线l1∥l2∥l3,
∴.
∵AB=5,BC=6,EF=4,
∴.
∴DE=.
故选:D.
【点睛】
本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.
6.(2020·新疆中考真题)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线,交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为( )
A. B.5 C. D.10
【答案】A
【解析】
【分析】
利用D为AB的中点,DE//BC,证明DE是中位线,求得的面积,利用相似三角形的性质求解的面积,由勾股定理可得答案.
【详解】
解:是AB的中点,
是的中位线,











故选A.
【点睛】
本题考查了三角形的中位线的性质,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.
7.(2020·贵州铜仁?中考真题)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档