下载此文档

人教版专题18:全等三角线中的辅助线做法及常见题型之互补型旋转-备战2021中考数学解题方法系统训练(全国通用).doc


初中 九年级 下学期 数学 人教版

1340阅读234下载32页1.03 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题18:全等三角线中的辅助线做法及常见题型之互补型旋转-备战2021中考数学解题方法系统训练(全国通用).doc
文档介绍:
试卷第2页,总6页
专题18:第三章 全等三角形中的辅助线的做法及常见题型之互补型旋转
一、单选题
1.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题
2.如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.
试卷第2页,总6页
3.如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是____.
4.如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.
三、解答题
5.如图,在中,,,点在上,点在上,,连接,,,垂足为.证明:.
6.在中,,,于点,
(1)如图1,点,分别在,上,且,当,时,求线段的长;
(2)如图2,点,分别在,上,且,求证:;
(3)如图3,点在的延长线上,点在上,且,求证:;
试卷第2页,总6页
7.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴ ∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.
∵ ∠EAF=45°∴ ∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵ ∠1=∠2,∠1+∠3=45°.
即∠GAF=∠________.
又AG=AE,AF=AE
∴ △GAF≌△________.
∴ _________=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
试卷第2页,总6页
8.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.
(1)当DF⊥AC时,求证:BE=CF;
(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由
9.如图所示,中,,,把一块含角的直角三角板的直角顶点放在的中点上(直角三角板的短直角边为,长直角边为),将三角板绕点按逆时针方向旋转.
(1)在如图所见中,交于,交于,证明;
(2)继续旋转至如图所见,延长交于,延长交于,证明.
10.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED
试卷第2页,总6页
(1)已知AB=10,AD=6,求CD;
(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2GH+EG.
11.一位同学拿了两块三角尺,做了一个探究活动:将的直角顶点放在的斜边的中点处,设.
(1)如图1所示,两三角尺的重叠部分为,则重叠部分的面积为______,周长为______.
(2)将如图1所示中的绕顶点逆时针旋转,得到如图2所示,此时重叠部分的面积为______,周长为______.
(3)如果将绕旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.
(4)在如图3所示情况下,若,求出重叠部分图形的周长.
12.阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.
试卷第2页,总6页
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档