下载此文档

人教版2020中考数学 相似三角形专题训练(含答案).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载12页193 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版2020中考数学 相似三角形专题训练(含答案).docx
文档介绍:
2020中考数学 相似三角形专题训练(含答案)
一、选择题:
1. 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是(  )
A. B. C. D.﹣
答案:D.
2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是(  )
A. = B. = C. = D. =
答案:C
3. 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① =;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是(  )
A.①②③④ B.①④ C.②③④ D.①②③
答案D.
 
4.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有(  )
A.1个 B.2个 C.3个 D.4个
答案C.
二、填空题:
5.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=  .
答案:4.
6. 在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.
答案:或.
7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为 .
故答案为113°或92°.
8.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=AB.若四边形ABCD的面积为,则四边形AMCD的面积是 .
答案:1.
9. (2017内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=  .
答案:.
10.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为 .
故答案为3:4.
三、解答题:
11.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.
(1)求证:△BDE∽△CEF;
(2)当点E移动到BC的中点时,求证:FE平分∠DFC.
【解答】解:(1)∵AB=AC,
∴∠B=∠C,
∵∠BDE=180°﹣∠B﹣∠DEB,
∠CEF=180°﹣∠DEF﹣∠DEB,
∵∠DEF=∠B,
∴∠BDE=∠CEF,
∴△BDE∽△CEF;
(2)∵△BDE∽△CEF,
∴,
∵点E是BC的中点,
∴BE=CE,
∴,
∵∠DEF=∠B=∠C,
∴△DEF∽△CEF,
∴∠DFE=∠CFE,
∴FE平分∠DFC.
12.
如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.
①求证:△DAE≌△DCF;
②求证:△ABG∽△CFG.
【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,
∴∠ADC=∠EDF=90°,AD=CD,DE=DF,
∴∠ADE+∠ADF=∠ADF+∠CDF,
∴∠ADE=∠CDF,
在△ADE和△CDF中,

∴△ADE≌△CDF;
②延长BA到M,交ED于点M,
∵△ADE≌△CDF,
∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,
∵∠MAD=∠BCD=90°,
∴∠EAM=∠BCF,
∵∠EAM=∠BAG,
∴∠BAG=∠BCF,
∵∠AGB=∠CGF,
∴△ABG∽△CFG.
13. 如图,在▱ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档