下载此文档

2021-2022学年鲁教版(五四制)九年级数学下册5.6直线与圆的位置关系 同步达标测评(word版含答案).doc


初中 九年级 下学期 数学 鲁教版

1340阅读234下载25页643 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2021-2022学年鲁教版(五四制)九年级数学下册5.6直线与圆的位置关系 同步达标测评(word版含答案).doc
文档介绍:
2021-2022学年鲁教版九年级数学下册《5.6直线与圆的位置关系》同步达标测评(附答案)
一.选择题(共6小题,满分30分)
1.如图,在平面直角坐标系中,已知⊙O的半径为2,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是(  )
A.﹣2≤x≤2 B.﹣2<x<2 C.0≤x≤2 D.﹣2≤x≤2
2.如图,在⊙O中,将沿弦AB翻折交半径AO的延长线于点D,延长BD交⊙O于点C,AC切所在的圆于点A,则tan∠C的值是(  )
A. B. C.2+ D.1+
3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是(  )
A.MN= B.若MN与⊙O相切,则AM=
C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切
4.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于(  )
A. B. C.8 D.5
5.已知△ABC的三边长为AB=2,BC=3,AC=4,则三角形内切圆半径为(  )
A. B. C. D.
6.如图,AB是⊙O的直径,CE切⊙O于点C交AB的延长线于点E.设点D是弦AC上任意一点(不含端点),若∠CEA=30°,BE=4,则CD+2OD的最小值为(  )
A.2 B. C.4 D.4
二.填空题(共6小题,满分30分)
7.设抛物线y=﹣x2+2x+3的顶点为E,与y轴交于点C,EF⊥x轴于点,若点M(m,0)是x轴上的动点,且满足以MC为直径的圆与线段EF有公共点,则实数m的取值范围是   .
8.如图,矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且点B,F关于过点E的直线对称,如果EF与以CD为直径的圆恰好相切,那么AE=   .
9.如图,点C在以AB为直径的半圆上,AB=10,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为5;③当AD=3时,EF与半圆相切;④若点F恰好落在弧BC上,则AD=5;⑤当点D从点A运动到B点时,线段EF扫过的面积是20.其中正确结论的序号是   .
10.如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为   .
11.点I为△ABC的内心,连AI交△ABC的外接圆于点D,若AI=2CD,点E为弦AC的中点,连接EI,IC,若IC=6,ID=5,则IE的长为   .
12.如图,AB为半圆的直径,C是半圆弧上任一点,正方形DEFG的一边DG在直线AB上,另一边DE过△ABC的内切圆圆心I,且点E在半圆弧上,已知DE=9,则△ABC的面积为   .
三.解答题(共8小题,满分60分)
13.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.
(1)试判断△ABC的形状,并说明理由;
(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.
14.已知,如图,点A的坐标为(2,0),⊙A交x轴于点B和C,交y轴于点D(0,4),过点D的直线与x轴交于点P,且tan∠APD=.
(1)求证:PD是⊙A的切线;
(2)判断在直线PD上是否存在点M,使得S△MOD=2S△AOD?若存在,求出点M的坐标;若不存在,请说明理由.
15.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.
16.如图,△ABC内接于⊙O,AB的延长线与过C点的切线GC相交于点D,BE与AC相交于点F,且CB=CE.
求证:(1)BE∥DG;
(2)CB2﹣CF2=BF•FE.
17.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档