下载此文档

人教第2章 函数概念与基本初等函数Ⅰ 第9节 函数模型及其应用.docx


高中 高一 下学期 数学 人教版

1340阅读234下载21页299 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第2章 函数概念与基本初等函数Ⅰ 第9节 函数模型及其应用.docx
文档介绍:
第9节 函数模型及其应用
考试要求 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
1.指数、对数、幂函数模型性质比较
  函数
性质   
y=ax
(a>1)
y=logax
(a>1)
y=xn
(n>0)
在(0,+∞)
上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化而各有不同
2.几种常见的函数模型
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a,b为常数,a≠0)
二次函数模型
f(x)=ax2+bx+c(a,b,c为常数,a≠0)
与指数函数相关的模型
f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)
与对数函数相关的模型
f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)
与幂函数相关的模型
f(x)=axn+b(a,b,n为常数,a≠0)
1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用
“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.
2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.
3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.
1.思考辨析(在括号内打“√”或“×”)
(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.(  )
(2)函数y=2x的函数值比y=x2的函数值大.(  )
(3)不存在x0,使ax0<x<logax0.(  )
(4)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)的增长速度.(  )
答案 (1)× (2)× (3)× (4)√
解析 (1)9折出售的售价为100(1+10%)×=99(元).
∴每件赔1元,(1)错误.
(2)中,当x=2时,2x=x2=4.不正确.
(3)中,如a=x0=,n=,不等式成立,因此(3)错误.
2.(易错题)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是(  )
A.f(x)>g(x)>h(x)
B.g(x)>f(x)>h(x)
C.g(x)>h(x)>f(x)
D.f(x)>h(x)>g(x)
答案 B
解析 在同一坐标系内,根据函数图象变化趋势,当x∈(4,+∞)时,增长速度大小排列为g(x)>f(x)>h(x).
3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为
“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是(  )
A.8 B.9 C.10 D.11
答案 C
解析 设该死亡生物体内原有的碳14的含量为1,则经过n个“半衰期”后的含量为,由<,得n≥10.
所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.
4.(2022·江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以用香农公式C=Blog2来表示,其中C是信道支持的最大速度或者叫信道容量,B是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均信号功率为1 000 W,平均噪声功率为10 W,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为(  )
A.0.1 W B.1.0 W C.3.2 W D.5.0 W
答案 A
解析 由题意可得S=1 000,N=10,则在信道容量未增大时,信道容量为
C1=Blog2=Blog2101,
设信道容量增大到原来的2倍时,平均噪声功率为N′ W,
此时信道容量C2=Blog2=2C1,则log21012=log2,即1+=1012,解得N′≈0.1,故选A.
5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.
答案 3
解析 设隔墙的长度为x(
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档