下载此文档

人教第11章 计数原理、概率、随机变量及其分布 第1节 分类加法计数原理与分步乘法计数原理.docx


高中 高一 下学期 数学 人教版

1340阅读234下载13页265 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第11章 计数原理、概率、随机变量及其分布 第1节 分类加法计数原理与分步乘法计数原理.docx
文档介绍:
第1节 分类加法计数原理与分步乘法计数原理
考试要求 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
1.分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.
2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立,分步完成”.
1.思考辨析(在括号内打“√”或“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(  )
(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(  )
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(  )
(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(  )
答案 (1)× (2)√ (3)√ (4)×
解析 分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.
2.(2021·滕州期中)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有不同的走法种数为(  )
A.24 B.16 C.12 D.48
答案 C
解析 分三类:一类是乘汽车有8种方法;一类是乘火车有2种方法;一类是乘飞机有2种方法,由分类加法计数原理知,共有8+2+2=12(种)方法.
3.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是(  )
A.12 B.8 C.6 D.4
答案 C
解析 分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.
4.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为(  )
A.16 B.13 C.12 D.10
答案 C
解析 将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方法,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).
5.(易错题)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(  )
A.24 B.18 C.12 D.6
答案 B
解析 分两类情况讨论:第1类,奇偶奇,个位有3位选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.
6.(易错题)某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有________种.
答案 243
解析 因为每个邮件选择发的方式有3种不同的情况.所以要发5个电子邮件,发送的方法有3×3×3×3×3=35=243(种).
考点一 分类加法计数原理的应用
1.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为(  )
A.6 B.5 C.3 D.2
答案 B
解析 5个人中每一个都可主持,所以共有5种选法.
2.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为(  )
A.3 B.4 C.6 D.8
答案 D
解析 以1为首项的等比数列为1,2,4;1,3,9;
以2为首项的等比数列为2,4,8;
以4为首项的等比数列为4,6,9;
把这4个数列的顺序颠倒,又得到另外的4个数列,
∴所求的数列共有2(2+1+1)=8(个).
3.椭圆+=1的焦点在x轴上,且m
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档