下载此文档

人教版专题9-1 概率与统计及分布列归类(理)(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载57页2.80 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题9-1 概率与统计及分布列归类(理)(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版).docx
文档介绍:
专题9-1 概率与统计及分布列归类(理)
目录
讲高考 1
题型全归纳 6
【题型一】摸球与放球型 6
【题型二】超几何分布 8
【题型三】两点分布 12
【题型四】二项分布 14
【题型五】正态分布 18
【题型六】多线程分类讨论型 23
【题型七】数列计算型分布列 26
【题型八】机器人跳棋型 30
【题型九】求导计算最值型 34
【题型十】多人比赛(传球)型 37
【题型十一】实验方案型 40
专题训练 44
讲高考

1.(2022年高考全国甲卷数学(理)真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
【答案】(1);(2)分布列见解析,.
【分析】(1)设甲在三个项目中获胜的事件依次记为,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;
(2)依题可知,的可能取值为,再分别计算出对应的概率,列出分布列,即可求出期望.
【详解】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为

(2)依题可知,的可能取值为,所以,
,


.
即的分布列为
0
10
20
30
0.16
0.44
0.34
0.06
期望.
2.(2022年新高考北京数学高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
【答案】(1)0.4(2)(3)丙
【分析】(1)    由频率估计概率即可
(2)    求解得X的分布列,即可计算出X的数学期望.
(3)    计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.
【详解】(1)由频率估计概率可得
甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
故答案为0.4
(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3



.
∴X的分布列为
X
0
1
2
3
P

(3)丙夺冠概率估计值最大.
因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.
3.(2022年新高考全国I卷数学真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生****惯(卫生****惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好
良好
病例组
40
60
对照组
10
90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生****惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生****惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生****惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050
0.010
0.001
k
3.841
6.635
10.828
【答案】(1)答案见解析(2)(i)证明见解析;(ii);
【分析】(1)由所给数据结合公式求出的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未患该疾病群体的卫生****惯有差异;(2)
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档