下载此文档

人教版专题19 极值点偏移(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载35页2.17 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题19 极值点偏移(解析版).docx
文档介绍:
专题19 极值点偏移
一、核心先导
二、考点再现
考点1、极值点偏移基本定义
众所周知,函数满足定义域内任意自变量都有,则函数关于直线对称;可以理解为函数在对称轴两侧,函数值变化快慢相同,且若为单峰函数,则必为的极值点. 如二次函数的顶点就是极值点,若的两根的中点为,则刚好有,即极值点在两根的正中间,也就是极值点没有偏移.
若相等变为不等,则为极值点偏移:若单峰函数的极值点为,且函数满足定义域内
左侧的任意自变量都有或,则函数极值点左右侧变化快慢不同. 故单峰函数定义域内任意不同的实数满足,则与极值点必有确定的大小关系:
①若,则称为极值点左偏;②若,则称为极值点右偏.[来源:学_科_网Z_X_X_K]
考点2、极值点偏移几种常考类型
1. 若函数存在两个零点且,求证:(为函数的极值点);
2. 若函数中存在且满足,求证:(为函数的极值点);
3. 若函数存在两个零点且,令,求证:;
4. 若函数中存在且满足,令,求证:.
考点3、极值点偏移的判定定理
对于可导函数,在区间上只有一个极大(小)值点,方程的解分别为,且,
(1)若,则,即函数在区间上极(小)大值点右(左)偏;
(2)若,则,即函数在区间上极(小)大值点右(左)偏.
三、解法解密
运用判定定理判定极值点偏移的方法
1、极值点偏移处理方法:
(1)求出函数的极值点;
(2)构造一元差函数;
(3)确定函数的单调性;
(4)结合,判断的符号,从而确定、的大小关系.
口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.
2、答题模板
若已知函数满足,为函数的极值点,求证:.
(1)讨论函数的单调性并求出的极值点;
假设此处在上单调递减,在上单调递增.[来源:Z,xx,k.Com]
(2)构造;
注:此处根据题意需要还可以构造成的形式.[来源:Zxxk.Com]
(3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;
假设此处在上单调递增,那么我们便可得出,从而得到:时,.
(4)不妨设,通过的单调性,,与的大小关系得出结论;
接上述情况,由于时,且,,故,又因为,且在上单调递减,从而得到,从而得证.
(5)若要证明,还需进一步讨论与的大小,得出所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.
此处只需继续证明:因为,故,由于在上单调递减,故.
【说明】
(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;
(2)此类题目若试题难度较低,会分解为三问,前两问分别求的单调性、极值点,证明与
(或与)的大小关系;若试题难度较大,则直接给出形如或的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.[来
四、考点解密
例1.(2022·甘肃酒泉·敦煌中学校考模拟预测)已知函数.
(1)讨论的单调性;
(2)若存在,且,使得,求证:.
【答案】(1)在上单调递增,在上单调递减,在上单调递增.
(2)证明见解析
【分析】(1)利用导函数与原函数单调性的关系求解即可;
(2)由(1)得,设,,利用导函数可得,从而可得;设,,利用导函数的几何意义可得,从而可得,两式联立即可求解.
【详解】(1)函数的定义域为,

令,得或,
在上,,在上,,在上,,
所以在上单调递增,在上单调递减,在上单调递增.
(2)由(1)可知,
设,,  
则,
因为,所以,在上单调递增.
又,所以当时,,即.
因为,所以,所以,
因为在上单调递增,且,,
所以,即.①
设,,
则.
因为,所以,在上单调递增,
又,所以当时,,即,
因为,所以,所以.
因为在上单调递增,且,,
所以,即.②
由①得,由②得,所以.
【点睛】函数的单调性是函数的重要性质之一,某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.
例2.(2022·江苏盐城·盐城中学校考模拟预测)已知函数.
(1)当时,证明;
(2)若存在极值点,且对任意满足的,都有,求a的取值范围.
【答案】(1)证明见解析;
(2)
【分析】(1)利用切线放缩可得,且等号不同时成立,则结论可证
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档