下载此文档

人教第34节 统计(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载23页889 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第34节 统计(解析版).docx
文档介绍:
第34节 统计
基本技能要落实
考点一 求线性回归方程
【例1】(2022·四省八校双教研联考)越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表:
周数x
6
5
4
3
2
1
正常值y
55
63
72
80
90
99
(1)作出散点图;
(2)根据上表数据用最小二乘法求出y关于x的线性回归方程=x+(精确到0.01);
(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及其以上为重度焦虑,若为中度焦虑及其以上,则要进行心理疏导,若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?
其中=,iyi=1 452,=91,=-.
[解] (1)
(2)=×(6+5+4+3+2+1)=3.5,=×(55+63+72+80+90+99)=76.5,=267.75,=≈-8.83,=76.5+8.83×3.5≈107.41,
∴线性回归方程为=-8.83x+107.41.
(3)≈1.14>1.12,∴该学生需要进行心理疏导.
【方法技巧】
线性回归分析问题的类型及解题方法
1.求线性回归方程
(1)利用公式,求出回归系数,.
(2)待定系数法:利用回归直线过样本点的中心求系数.
2.利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.
3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数.
【跟踪训练】
1.(2022·福州市第一学期抽测)随着我国中医学的发展,药用昆虫的使用相应愈来愈多.每年春暖以后至寒冬前,昆虫大量活动与繁殖,易于采集各种药用昆虫.已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:℃)有关,于是科研人员在3月份的31天中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据如下表:
日期
2日
7日
15日
22日
30日
温度x/℃
10
11
13
12
8
产卵数y/个
23
25
30
26
16
(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m,n,求事件“m,n均不小于25”的概率.
(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立y关于x的线性回归方程,再对被选取的2组数据进行检验.
①若选取的是3月2日与30日这2组的数据,请根据3月7日、15日和22日这3组的数据,求出y关于x的线性回归方程;
②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为=,=-.
解:(1)依题意得,m,n的所有情况有{23,25},{23,30},{23,26},{23,16},{25,30},{25,26},{25,16},{30,26},{30,16},{26,16},共10个.
设“m,n均不小于25”为事件A,则事件A包含的所有情况有 {25,30},{25,26},{30,26},共3个,
所以P(A)=,
故事件“m,n均不小于25”的概率为.
(2)①由已知数据得=12,=27,(xi-)(yi-)=5,(xi-)2=2,
所以==,
=-=27-×12=-3.
所以y关于x的线性回归方程为=x-3.
②由①知,y关于x的线性回归方程为=x-3.
当x=10时,=×10-3=22,|22-23|<2,
当x=8时,=×8-3=17,|17-16|<2.
所以①中所得的线性回归方程=x-3是可靠的.
考点二 相关系数及其应用
【例2】(2019·合肥市第二次质量检测)为了了解A地区足球特色学校的发展状况,某调查机构统计得到如下数据:
年份x
2014
2015
2016
2017
2018
足球特色学校数y/百个
0.30
0.60
1.00
1.40
1.70
(1)根据表中数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性相关性较弱);
(2)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).
参考公式及数据:r=,
(xi-)2=10,(yi-)2=1.3,≈3.605 6,=,=-.
[解] (1)=2
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档