下载此文档

人教第5章 平面向量与复数 第1节 平面向量的概念及线性运算.docx


高中 高三 下学期 数学 人教版

1340阅读234下载19页478 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第5章 平面向量与复数 第1节 平面向量的概念及线性运算.docx
文档介绍:
第1节 平面向量的概念及线性运算
考试要求 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
(2)零向量:长度为0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
向量运算
定 义
法则(或几何意义)
运算律
加法
求两个向量和的运算
(1)交换律:
a+b=b+a.
(2)结合律:
(a+b)+c=
a+(b+c)
减法
减去一个向量相当于加上这个向量的相反向量
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μa)=λμa;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即+++…+=,特别地, 一个封闭图形,首尾连接而成的向量和为零向量.
2.中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则=(+).
3.=λ+μ(λ,μ为实数),若点A,B,C共线,则λ+μ=1.
4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.
1.思考辨析(在括号内打“√”或“×”)
(1)|a|与|b|是否相等与a,b的方向无关.(  )
(2)若a∥b,b∥c,则a∥c.(  )
(3)向量与向量是共线向量,则A,B,C,D四点在一条直线上.(  )
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.(  )
答案 (1)√ (2)× (3)× (4)√
解析 (2)若b=0,则a与c不一定平行.
(3)共线向量所在的直线可以重合,也可以平行,则A,B,C,D四点不一定在一条直线上.
2.(易错题)给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量与相等.则所有正确命题的序号是(  )
A.① B.③ C.①③ D.①②
答案 A
解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量与互为相反向量,故③错误.
3.设M为△ABC所在平面内一点,且=3,则(  )
A.=-+
B.=-
C.=+
D.=-
答案 A
解析 由=3,得=,
所以=+=+
=+(+)=-+.
4.(2021·长沙调研)已知点O为△ABC的外接圆的圆心,且++=0,则△ABC的内角A等于(  )
A.30° B.45° C.60° D.90°
答案 A
解析 由++=0,得+=.
又O为△ABC的外接圆的圆心,
根据加法的几何意义,四边形OACB为菱形,且∠CAO=60°,因此∠CAB=30°.
5.若四边形ABCD满足∥且||=||,则四边形ABCD的形状是________.
答案 等腰梯形或平行四边形
解析 当||=||时,四边形ABCD是平行四边形;当||≠||时,四边形ABCD是等腰梯形.
6.(2022·哈尔滨质检)设a与b是两个不共线向量,且向量a+λb与-(b-2a)共线,则λ=________.
答案 -
解析 由已知2a-b≠0,依题意知向量a+λb与2a-b共线,设a+λb=k(2a-b),则有(1-2k)a+(k+λ)b=0.
因为a,b是两个不共线向量,故a与b均不为零向量,所以解得k=,λ=-.
考点一 平面向量的概念
1.给出下列命题,正确的命题为(  )
A.向量的长度与向量的长度相等
B.向量a与b平行,则a与b的方向相同或相反
C.|a|+|b|=|a-b|⇔a与b方向相反
D.若非零向量a与非零向量b的方向相同或相反,则a+b与a,b之一
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档