下载此文档

人教第7章 不等式、推理与证明 第4节 推理与证明.docx


高中 高三 下学期 数学 人教版

1340阅读234下载18页210 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第7章 不等式、推理与证明 第4节 推理与证明.docx
文档介绍:
第4节 推理与证明
考试要求 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单演绎推理.3.了解合情推理和演绎推理之间的联系和差异.4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.5.了解反证法的思考过程的特点.6.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
1.合情推理
类型
定义
特点
归纳推理
根据一类事物的部分对象具有某种性质,推出这类事物的全部对象都具有这种性质的推理
由部分到整体、由个别到一般
类比推理
根据两类事物之间具有某些类似(一致)性,推测一类事物具有另一类事物类似(或相同)的性质的推理
由特殊到特殊
2.演绎推理
(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.
(2)“三段论”是演绎推理的一般模式,包括:
①大前提——已知的一般原理;
②小前提——所研究的特殊情况;
③结论——根据一般原理,对特殊情况作出的判断.
3.直接证明
内容
综合法
分析法
定义
利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立
从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止
实质
由因导果
执果索因
框图表示
→→…

→→…→
文字语言
因为……所以……或由……得……
要证……只需证……即证……
4.间接证明
间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.
(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.
(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.
5.数学归纳法
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;
(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.
1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.
2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.
3.分析法是执果索因,实际上是寻找使结论成立的充分条件;综合法是由因导果,就是寻找已知的必要条件.
4.用反证法证题时,首先否定结论,否定结论就是找出结论的反面的情况,然后推出矛盾,矛盾可以与已知、公理、定理、事实或者假设等相矛盾.
5.推证n=k+1时一定要用上n=k时的假设,否则就不是数学归纳法.
1.思考辨析(在括号内打“√”或“×”)
(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(  )
(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(  )
(3)用反证法证明结论“a>b”时,应假设“a<b”.(  )
(4)用数学归纳法证明问题时,第一步是验证n=1时结论成立.(  )
答案 (1)× (2)√ (3)× (4)×
解析 (1)类比推理的结论不一定正确.
(3)应假设“a≤b”.
(4)有的证明问题第一步并不是验证n=1时结论成立,如证明凸n边形的内角和为(n-2)·180°,第一步要验证n=3时结论成立.
2.(易错题)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理(  )
A.结论正确 B.大前提不正确
C.小前提不正确 D.全不正确
答案 C
解析 f(x)=sin(x2+1)不是正弦函数,所以小前提错误.
3.(易错题)用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是(  )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
答案 A
解析 方程x3+ax+b=0至少有一个实根的反面是方
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档