下载此文档

人教第08节 不等式的性质、一元二次不等式与基本不等式(解析版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载23页841 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第08节 不等式的性质、一元二次不等式与基本不等式(解析版).docx
文档介绍:
第8节 不等式的性质、一元二次不等式与基本不等式
基础知识要夯实
1.实数的大小顺序与运算性质的关系
(1)a>b⇔a-b>0;
(2)a=b⇔a-b=0;
(3)a<b⇔a-b<0.
2.不等式的性质
(1)对称性:a>b⇔b<a;
(2)传递性:a>b,b>c⇒a>c;
(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;
(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;
(5)可乘方:a>b>0⇒an>bn(n∈N,n≥1);
(6)可开方:a>b>0⇒> (n∈N,n≥2).
3.三个“二次”间的关系
判别式Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c (a>0)的图象
一元二次方程ax2+bx+c=0 (a>0)的根
有两相异实根
x1,x2(x1<x2)
有两相等实根
x1=x2=-
没有实数根
ax2+bx+c>0
(a>0)的解集
R
ax2+bx+c<0
(a>0)的解集
{x|x1<x<x2}


[微点提醒]
1.有关分数的性质
(1)若a>b>0,m>0,则;(b-m>0).
(2)若ab>0,且a>b⇔.
2.对于不等式ax2+bx+c>0,求解时不要忘记a=0时的情形.
3.当Δ<0时,不等式ax2+bx+c>0(a≠0)的解集为R还是∅,要注意区别.
4.基本不等式:≤
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.
5.两个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤ (a,b∈R),当且仅当a=b时取等号.
6.利用基本不等式求最值
已知x≥0,y≥0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2 (简记:积定和最小).
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).
[微点提醒]
1.≥2(a,b同号),当且仅当a=b时取等号.
2.ab≤≤.
3. (a>0,b>0).
典型例题剖析
考点一 不等式的性质 
角度1 比较大小及不等式性质的简单应用
【例1-1】 (1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是(  )
A.c≥b>a B.a>c≥b
C.c>b>a D.a>c>b
(2)(一题多解)若<0,给出下列不等式:①;②|a|+b>0;③a->b-;④ln a2>ln b2.其中正确的不等式是(  )
A.①④ B.②③ C.①③ D.②④
【答案】(1)A (2)C
【解析】(1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b.
又b+c=6-4a+3a2,∴2b=2+2a2,∴b=a2+1,
∴b-a=a2-a+1=+>0,
∴b>a,∴c≥b>a.
(2)法一 因为<0,故可取a=-1,b=-2.
显然|a|+b=1-2=-1<0,所以②错误;因为ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.
法二 由<0,可知b<a<0.①中,因为a+b<0,ab>0,所以<0,>0.故有,即①正确;
②中,因为b<a<0,所以-b>-a>0.故-b>|a|,即|a|+b<0,故②错误;
③中,因为b<a<0,又<0,则->->0,
所以a->b-,故③正确;
④中,因为b<a<0,根据y=x2在(-∞,0)上为减函数,可得b2>a2>0,而y=ln x在定义域(0,+∞)上为增函数,所以ln b2>ln a2,故④错误.由以上分析,知①③正确.
角度2 利用不等式变形求范围
【例1-2】 (一题多解)设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.
【答案】[5,10]
【解析】法一 设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即4a-2b=(m+n)a+(n-m)b.
于是得解得
∴f(-2)=3f(-1)+f(1).
又∵1≤f(-1)≤2,2≤f(1)≤4.
∴5≤3f(-1)+f(1)≤10,
故5≤f(-2)≤10.
法二 由

∴f(-2)=4a-2
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档