下载此文档

人教第28节 圆的方程、直线与圆、圆与圆的位置关系(解析版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载25页1.26 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第28节 圆的方程、直线与圆、圆与圆的位置关系(解析版).docx
文档介绍:
第28节 圆的方程、直线与圆、圆与圆的位置关系
基础知识要夯实
1.圆的定义和圆的方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆




(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r


x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
3.直线与圆的位置关系
设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由
消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.
位置关系
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
4.圆与圆的位置关系
设两圆的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示:
位置关系
外离
外切
相交
内切
内含
图形
量的关系
d>R+r
d=R+r
R-r<d<R+r
d=R-r
d<R-r
公切线条数
4
3
2
1
0
5.常用结论
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.直线被圆截得的弦长的求法
(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2.
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出xM+xN和xM·xN,则|MN|=·.
基本技能要落实
考点一 圆的方程
1.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________.
【答案】x2+y2-2x=0
【解析】法一 设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则解得D=-2,E=0,F=0,故圆的方程为x2+y2-2x=0.
法二 设O(0,0),A(1,1),B(2,0),则kOA=1,kAB=-1,所以kOA·kAB=-1,即OA⊥AB,所以△OAB是以角A为直角的直角三角形,则线段BO是所求圆的直径,则圆心为C(1,0),半径
r=|OB|=1,圆的方程为(x-1)2+y2=1,即x2+y2-2x=0.
2.已知圆C的圆心在直线x+y=0上,圆C与直线x-y=0相切,且截直线x-y-3=0所得的弦长为,则圆C的方程为________.
【答案】(x-1)2+(y+1)2=2
【解析】法一 ∵所求圆的圆心在直线x+y=0上,
∴可设所求圆的圆心为(a,-a).
∵所求圆与直线x-y=0相切,∴半径r==|a|.
又所求圆截直线x-y-3=0所得的弦长为,圆心(a,-a)到直线x-y-3=0的距离d=,
∴d2+=r2,即+=2a2,解得a=1,
∴圆C的方程为(x-1)2+(y+1)2=2.
法二 设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),
则圆心(a,b)到直线x-y-3=0的距离d=,
∴r2=+,即2r2=(a-b-3)2+3.①
∵所求圆与直线x-y=0相切,∴=r.②
又∵圆心在直线x+y=0上,∴a+b=0.③
联立①②③,解得
故圆C的方程为(x-1)2+(y+1)2=2.
3.(2021·兰州、张掖重点中学联考)设A(2,-1),B(4,1),则以线段AB为直径的圆的方程为(  )
A.(x-3)2+y2=2 B.(x-3)2+y2=8
C.(x+3)2+y2=2 D.(x+3)2+y2=8
【答案】A
【解析】因为A(2,-1),B(4,1),所以由中点坐标公式可得线段AB的中点坐标为(3,0),即圆心为(3,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档