下载此文档

人教第30节 双曲线(解析版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载27页1.13 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第30节 双曲线(解析版).docx
文档介绍:
第30节 双曲线
基础知识要夯实
1.双曲线的定义
平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
(1)若a<c,则集合P为双曲线;
(2)若a=c,则集合P为两条射线;
(3)若a>c,则集合P为空集.
2.双曲线的标准方程和几何性质
标准方程
-=1
(a>0,b>0)
-=1
(a>0,b>0)
图 形
性 质
范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫做双曲线的实轴,它的长度|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a,b,c的关系
c2=a2+b2
1.过双曲线的一个焦点且与实轴垂直的弦的长为.
2.离心率e===.
3.等轴双曲线的渐近线互相垂直,离心率等于.
4.若渐近线方程为y=±x,则双曲线方程可设为-=λ(λ≠0).
5.双曲线的焦点到渐近线的距离为b.
6.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=c+a,|PF2|min=c-a.
7.焦点三角形的面积:P为双曲线上的点,F1,F2为双曲线的两个焦点,且∠F1PF2=θ,则△F1PF2的面积为.
基本技能要落实
考点一 双曲线的标准方程
1.已知双曲线C:-=1(a>0,b>0)的渐近线方程为y=±x,且其右焦点为(5,0),则双曲线C的标准方程为(  )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】B
【解析】由题意得=,c2=a2+b2=25,所以a=4,b=3,所以所求双曲线的标准方程为-=1.
2.与椭圆+y2=1共焦点且过点P(2,1)的双曲线标准方程是(  )
A.-y2=1 B.-y2=1
C.-=1 D.x2-=1
【答案】B
【解析】法一 椭圆+y2=1的焦点坐标是(±,0).
设双曲线标准方程为-=1(a>0,b>0),
因为双曲线过点P(2,1),
所以-=1,又a2+b2=3,
解得a2=2,b2=1,所以所求双曲线的标准方程是-y2=1.
法二 设所求双曲线标准方程为+=1(1<λ<4),
将点P(2,1)的坐标代入可得+=1,
解得λ=2(λ=-2舍去),
所以所求双曲线标准方程为-y2=1.
3.经过点P(3,2),Q(-6,7)的双曲线的标准方程为________.
【答案】-=1
【解析】设双曲线方程为mx2+ny2=1(mn<0),
因为所求双曲线经过点P(3,2),Q(-6,7),
所以解得
故所求双曲线标准方程为-=1.
4.焦点在x轴上,焦距为10,且与双曲线-x2=1有相同渐近线的双曲线的标准方程是________________.
【答案】-=1
【解析】设所求双曲线的标准方程为-x2=-λ(λ>0),即-=1,则有4λ+λ=25,解得λ
=5,所以所求双曲线的标准方程为-=1.
【方法技巧】
1.用待定系数法求双曲线的方程时,先确定焦点在x轴还是y轴上,设出标准方程,再由条件确定a2,b2的值,即“先定型,再定量”,如果焦点的位置不好确定,可将双曲线的方程设为-=λ(λ≠0)或mx2-ny2=1(mn>0),再根据条件求解.
2.与双曲线-=1有相同渐近线时可设所求双曲线方程为-=λ(λ≠0).
考点二 双曲线的定义及应用
【例2】(1)(2021·合肥质检)-=4表示的曲线方程为(  )
A.-=1(x≤-2) B.-=1(x≥2)
C.-=1(y≤-2) D.-=1(y≥2)
(2)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,∠F1PF2=60°,则△F1PF2的面积为________.
(3)已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的一动点,则|PF|+|PA|的最小值为________.
【答案】(1)C (2)2 (3)9
【解析】(1)的几何意义为点M(x,y)到点F1(0,3)的距离,的几何意义为点M(x,y)到点F2(0,-3)的距离,则
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档