下载此文档

2024年高考数学一轮复习(人教版) 第1章 §1.4 基本不等式.docx


高中 高一 下学期 数学 人教版

1340阅读234下载15页513 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第1章 §1.4 基本不等式.docx
文档介绍:
§1.4 基本不等式
考试要求 1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.
知识梳理
1.基本不等式:≤
(1)基本不等式成立的条件:a>0,b>0.
(2)等号成立的条件:当且仅当a=b时,等号成立.
(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.
2.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R).
(2)+≥2(a,b同号).
(3)ab≤2 (a,b∈R).
(4)≥2 (a,b∈R).
以上不等式等号成立的条件均为a=b.
3.利用基本不等式求最值
(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值2.
(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值S2.
注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)不等式ab≤2与≤等号成立的条件是相同的.( × )
(2)y=x+的最小值是2.( × )
(3)若x>0,y>0且x+y=xy,则xy的最小值为4.( √ )
(4)函数y=sin x+,x∈的最小值为4.( × )
教材改编题
1.若正实数a,b满足a+4b=ab,则ab的最小值为(  )
A.16 B.8 C.4 D.2
答案 A
解析 因为正实数a,b满足a+4b=ab,
所以ab=a+4b≥2=4,
所以ab≥16,
当且仅当a=4b,即a=8,b=2时等号成立.
2.函数y=x+(x≥0)的最小值为________.
答案 1
解析 因为x≥0,所以x+1>0,>0,
利用基本不等式得y=x+=x+1+-1≥2-1=1,
当且仅当x+1=,即x=0时,等号成立.
所以函数y=x+(x≥0)的最小值为1.
3.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m2.
答案 25
解析 设矩形的一边为x m,面积为y m2,
则另一边为×(20-2x)=(10-x)m,
其中0<x<10,
∴y=x(10-x)≤2=25,
当且仅当x=10-x,即x=5时,等号成立,
∴ymax=25,
即矩形场地的最大面积是25 m2.
题型一 利用基本不等式求最值
命题点1 配凑法
例1 (1)已知x>2,则函数y=x+的最小值是(  )
A.2 B.2+2
C.2 D.+2
答案 D
解析 由题意可知,x-2>0,
∴y=(x-2)++2≥2+2=+2,当且仅当x=2+时,等号成立,
∴函数y=x+(x>2)的最小值为+2.
(2)设0<x<,则函数y=4x(3-2x)的最大值为________.
答案 
解析 ∵0<x<,∴3-2x>0,
y=4x(3-2x)=2[2x(3-2x)]≤22=,
当且仅当2x=3-2x,即x=时,等号成立.
∵∈,
∴函数y=4x(3-2x)的最大值为.
命题点2 常数代换法
例2 已知x>0,y>0,且4x+2y-xy=0,则2x+y的最小值为(  )
A.16 B.8+4
C.12 D.6+4
答案 A
解析 由题意可知+=1,
∴2x+y=(2x+y)=++8≥2+8=16,
当且仅当=,即x=4,y=8时,等号成立,
则2x+y的最小值为16.
命题点3 消元法
例3 (2023·烟台模拟)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.
答案 6
解析 方法一 (换元消元法)
由已知得9-(x+3y)=xy=·x·3y≤·2,当且仅当x=3y,即x=3,y=1时取等号.
即(x+3y)2+12(x+3y)-108≥0,
令x+3y=t,则t>0且t2+12t-108≥0,
得t≥6,即x+3y的最小值为6.
方法二 (代入消元法)
由x+3y+xy=9,得x=,
所以x+3y=+3y=
==
=3(1+y)+-6≥2-6
=12-6=6,
当且仅当3(1+y)=,即y=1,x=3时取等号,
所以x+3y的最小值为6.
延伸探究 本例条件不变,求xy的最大值.
解 9-xy=x+3y≥2,
∴9-xy≥2,
令=t,
∴t>0,
∴9-t2≥2t,
即t2+2t-9≤0,
解得0<t≤,
∴≤,∴xy≤3,
当且仅当x=3y,即x=3,y=1时取等号,
∴xy的最大值为3.
思维升华 (1)前提:“一正”“二定”“三相等”.
(2)要根
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档