下载此文档

人教版高中数学第1讲 不等式的性质与一元二次不等式.doc


高中 高二 下学期 数学 人教版

1340阅读234下载5页421 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第1讲 不等式的性质与一元二次不等式.doc
文档介绍:
第1讲 不等式的性质与一元二次不等式
一、选择题
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x),g(x)的大小关系是(  )
A.f(x)=g(x) B.f(x)>g(x)
C.f(x)<g(x) D.随x的值变化而变化
解析 f(x)-g(x)=x2-2x+2=(x-1)2+1>0⇒f(x)>g(x).
答案 B
2.已知下列四个条件:①b>0>a,②0>a>b,③a>0>b,④a>b>0,能推出<成立的有(  )
A.1个 B.2个 C.3个 D.4个
解析 运用倒数性质,由a>b,ab>0可得<,②、④正确.又正数大于负数,①正确,③错误,故选C.
答案 C
3.(2017·河北省三市联考)若集合A={x|3+2x-x2>0},集合B={x|2x<2},则A∩B等于(  )
A.(1,3) B.(-∞,-1)
C.(-1,1) D.(-3,1)
解析 依题意,可求得A=(-1,3),B=(-∞,1),
∴A∩B=(-1,1).
答案 C
4.若集合A={x|ax2-ax+1<0}=∅,则实数a的取值范围是(  )
A.{a|0<a<4} B.{a|0≤a<4}
C.{a|0<a≤4} D.{a|0≤a≤4}
解析 由题意知a=0时,满足条件.
a≠0时,由得0<a≤4,所以0≤a≤4.
答案 D
5.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=
f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是(  )
A.(-1,0) B.(2,+∞)
C.(-∞,-1)∪(2,+∞) D.不能确定
解析 由f(1-x)=f(1+x)知f(x)的图象关于直线x=1对称,即=1,解得a=2.
又因为f(x)开口向下,
所以当x∈[-1,1]时,f(x)为增函数,
所以f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,
f(x)>0恒成立,即b2-b-2>0恒成立,
解得b<-1或b>2.
答案 C
二、填空题
6.已知函数f(x)=则不等式f(x)>3的解集为________.
解析 由题意知或解得x>1.故原不等式的解集为{x|x>1}.
答案 {x|x>1}
7.(2016·重庆模拟)若关于x的不等式ax>b的解集为,则关于x的不等式ax2+bx-a>0的解集为________.
解析 由已知ax>b的解集为,可知a<0,且=,将不等式ax2+bx-a>0两边同除以a,得x2+x-<0,即x2+x-<0,解得-1<x<,故不等式ax2+bx-a>0的解集为.
答案 
8.不等式a2+8b2≥λb(a+b)对于任意的a,b∈R恒成立,则实数λ的取值范围为________.
解析 因为a2+8b2≥λb(a+b)对于任意的a,b∈R恒成立,所以a2+8b2-λb(a
+b)≥0对于任意的a,b∈R恒成立,即a2-λba+(8-λ)b2≥0恒成立,
由二次不等式的性质可得,
Δ=λ2b2+4(λ-8)b2=b2(λ2+4λ-32)≤0,
所以(λ+8)(λ-4)≤0,
解得-8≤λ≤4.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档