[基础题组练]
1.设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )
A.{2} B.{2,3}
C.{-1,2,3} D.{1,2,3,4}
解析:选D.由条件可得A∩C={1,2},故(A∩C)∪B={1,2,3,4}.
2.(2019·高考全国卷Ⅱ)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )
A.(-∞,1) B.(-2,1)
C.(-3,-1) D.(3,+∞)
解析:选A.因为A={x|x2-5x+6>0}={x|x>3或x<2},B={x|x-1<0}={x|x<1},所以A∩B={x|x<1},故选A.
3.(2020·广东湛江测试(二))已知集合A={1,2,3,4},B={y|y=2x-3,x∈A},则集合A∩B的子集个数为( )
A.1 B.2
C.4 D.8
解析:选C.因为A={1,2,3,4},B={y|y=2x-3,x∈A},所以B={-1,1,3,5},所以A∩B={1,3}.所以集合A∩B的子集个数为22=4.故选C.
4.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )
A.9 B.8
C.5 D.4
解析:选A.法一:由x2+y2≤3知,-≤x≤,-≤y≤.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为CC=9,故选A.
法二:根据集合A的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x2+y2=3中有9个整点,即为集合A的元素个数,故选A.
5.(2020·太原模拟)已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是( )
A.(-2,1) B.[-1,0]∪[1,2)
C.(-2,-1)∪[0,1] D.[0,1]
解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.
6.(2020·福建厦门3月质量检查)已知集合A={x|x2-4x+3>0},B={x|x-a<0},若B⊆A,则实数a的取值范围为( )
A.(3,+∞) B.[3,+∞)
C.(-∞,1) D.(-∞,1]
解析:选D.A={x|x2-4x+3>0}={x|x<1或x>3},B={x|x-a<0}={x|x<a}.因为B⊆A,所以a≤1.故选D.
7.(多选)(2021·预测)若集合A={x|x(x-2)≤0},且A∪B=A,则集合B可能是( )
A.{-1} B.{0}
C.{1} D.{2}
解析:选BCD.因为A={x|x(x-2)≤0},所以A=[0,2].因为A∪B=A,所以B⊆A.由选项知有{0}A,{1}A,{2}A.故选BCD.
8.已知全集U=R,函数y=ln(1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是( )
A