下载此文档

人教版高中数学第2讲 平面向量基本定理及坐标表示.doc


高中 高二 下学期 数学 人教版

1340阅读234下载15页574 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第2讲 平面向量基本定理及坐标表示.doc
文档介绍:
第2讲 平面向量基本定理及坐标表示
一、知识梳理
1.平面向量基本定理
(1)定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
(2)基底:不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
2.平面向量的坐标运算
(1)向量加法、减法、数乘向量及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),
λa=(λx1,λy1),|a|=.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标;
②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),
||=.
3.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),a∥b⇔x1y2-x2y1=0.
[提醒] 当且仅当x2y2≠0时,a∥b与=等价.
即两个不平行于坐标轴的共线向量的对应坐标成比例.
常用结论
1.共线向量定理应关注的两点
(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件不能表示成=,因为x2,y2有可能等于0,应表示为x1y2-x2y1=0.
(2)判断三点是否共线,先求每两点对应的向量,然后按两向量共线进行判定.
2.两个结论
(1)已知P为线段AB的中点,若A(x1,y1),B(x2,y2),则P点坐标为.
(2)已知△ABC的顶点A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标为
.
二、教材衍化
1.已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=(  )
A.- B.
C.-2 D.2
解析:选A.由向量a=(2,3),b=(-1,2),得ma+nb=(2m-n,3m+2n),a-2b=(4,-1).由ma+nb与a-2b共线,得-(2m-n)=4(3m+2n),所以=-.故选A.
2.已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.
解析:设D(x,y),则由=,得(4,1)=(5-x,6-y),即解得
答案:(1,5)
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)平面内的任何两个向量都可以作为一组基底.(  )
(2)在△ABC中,向量,的夹角为∠ABC.(  )
(3)同一向量在不同基底下的表示是相同的.(  )
(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成=.(  )
(5)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2 ,μ1=μ2.(  )
答案:(1)× (2)× (3)× (4)× (5)√
二、易错纠偏
常见误区(1)利用平面向量基本定理的前提是基底不能共线;
(2)由点的坐标求向量坐标忽视起点与终点致误.
1.设O是平行四边形ABCD的两条对角线AC,BD的交点,则给出下列向量组:①与;②与;③与;④与.
其中可作为这个平行四边形所在平面的一组基底的是(  )
A.①② B.①③
C.①④ D.③④
解析:选B.平面内任意两个不共线的向量都可以作为基底,如图:
对于①,与不共线,可作为基底;
对于②,与为共线向量,不可作为基底;
对于③,与是两个不共线的向量,可作为基底;
对于④,与在同一条直线上,是共线向量,不可作为基底.
2.已知点A(0,1),B(3,2),向量=(-4,-3),则向量=(  )
A.(-7,-4) B.(7,4)
C.(-1,4) D.(1,4)
解析:选A.法一:设C(x,y),
则=(x,y-1)=(-4,-3),
所以
从而=(-4,-2)-(3,2)=(-7,-4).故选A.
法二:=(3,2)-(0,1)=(3,1),
=-=(-4,-3)-(3,1)=(-7,-4).
故选A.
考点一 平面向量基本定理的应用(基础型)
了解平面向量的基本定理及其意义.
核心素养:数学运算
(1)在△ABC中,点D,E分别在边BC,AC上,且=2,=3,若=a,=b,则=(  )
A.a+b         B.a-b
C.-a-b D.-a+b
(2)(2020·郑州市第一次质量预测)如图,在平行四边形ABCD中,E,F分别为边AB,BC
的中点,连接CE,DF,交于点G.若=λ+μ(λ,μ∈R),则=________.
【解析】 
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档