第2讲 直接证明与间接证明
一、选择题
1.若a,b∈R,则下面四个式子中恒成立的是( )
A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)
C.a2+3ab>2b2 D.<
解析 在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.
答案 B
2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( )
A.三个内角都不大于60°
B.三个内角都大于60°
C.三个内角至多有一个大于60°
D.三个内角至多有两个大于60°
答案 B
3.已知m>1,a=-,b=-,则以下结论正确的是( )
A.a>b B.a<b
C.a=b D.a,b大小不定
解析 ∵a=-=,
b=-=.
而+>+>0(m>1),
∴<,即a<b.
答案 B
4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证<a”索的因应是( )
A.a-b>0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
解析 由题意知<a⇐b2-ac<3a2
⇐(a+c)2-ac<3a2
⇐a2+2ac+c2-ac-3a2<0
⇐-2a2+ac+c2<0
⇐2a2-ac-c2>0
⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.
答案 C
5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是( )
A.①与②的假设都错误
B.①与②的假设都正确
C.①的假设正确;②的假设错误
D.①的假设错误;②的假设正确
解析 反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.
答案 D
二、填空题
6.+与2+的大小关系为________.
解析 要比较+与2+的大小,
只需比较(+)2与(2+)2的大小,
只需比较6+7+2与8+5+4的大小,
只需比较与2的大小,只需比较42与40的大小,∵42>40,∴+>2+.
答案 +>2+
7.用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是__________________.
答案 都不能被5整除
8.下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使+≥2成立的条件的序号是________.
解析 要使+≥2,只需>0成立,即a,b不为0且同号即可,故①③④能使+≥2成立.
答案 ①③④
三、解答题
9.若a,b,c是不全相等的正数,求证:
lg+lg+lg>lg a+lg b+lg c.
证明 ∵a,b,c∈(0,+∞),
∴≥>0,≥>0,≥>0.
又上述三个不等式中等号不能同时成立.
∴··>abc成立.
上式两边同时取常用对数,
得lg>lg abc,
∴lg+lg+l