下载此文档

人教版高中数学第3讲 平面向量的数量积及应用举例.doc


高中 高二 下学期 数学 人教版

1340阅读234下载16页601 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第3讲 平面向量的数量积及应用举例.doc
文档介绍:
第3讲 平面向量的数量积及应用举例
一、知识梳理
1.向量的夹角
(1)定义:已知两个非零向量a和b,作=a,=b,则∠AOB=θ叫做向量a与b的夹角.
(2)范围:向量夹角θ的范围是0°≤θ≤180°.
[注意] 当a与b同向时,θ=0°;a与b反向时,θ=180°;a与b垂直时,θ=90°.
2.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos_θ叫做a与b的数量积,记作a·b
投影
|a|cos_θ叫做向量a在b方向上的投影,
|b|cos_θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos_θ的乘积
[注意] 投影和两向量的数量积都是数量,不是向量.
3.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的坐标运算及有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,a·b=x1x2+y1y2.
结论
几何表示
坐标表示

|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
常用结论
(1)两向量a与b为锐角⇔a·b>0且a与b不共线.
(2)两向量a与b为钝角⇔a·b<0且a与b不共线.
(3)(a±b)2=a2±2a·b+b2.
(4)(a+b)·(a-b)=a2-b2.
(5)a与b同向时,a·b=|a||b|.
(6)a与b反向时,a·b=-|a||b|.
二、教材衍化
已知a·b=-12,|a|=4,a和b的夹角为135°,则|b|为(  )
A.12 B.6
C.3 D.3
解析:选B.a·b=|a|·|b|cos 135°=-12,所以|b|==6.
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)向量在另一个向量方向上的投影为数量,而不是向量.(  )
(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.(  )
(3)由a·b=0可得a=0或b=0.(  )
(4)(a·b)c=a(b·c).(  )
(5)两个向量的夹角的范围是.(  )
(6)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.(  )
答案:(1)√ (2)√ (3)× (4)× (5)× (6)×
二、易错纠偏
常见误区(1)没有找准向量的夹角致误;
(2)不理解向量的数量积的几何意义致误;
(3)向量的数量积的有关性质应用不熟练致误.
1.在△ABC中,AB=3,AC=2,BC=,则·的值为________.
解析:在△ABC中,由余弦定理得cos A===.
所以·=||||cos(π-A)=-||||·cos A=-3×2×=-.
答案:-
2.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________.
解析:由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2.
答案:-2
3.已知向量a与b的夹角为,|a|=|b|=1,且a⊥(a-λb),则实数λ=________.
解析:由题意,得a·b=|a||b|cos =,因为a⊥(a-λb),所以a·(a-λb)=|a|2-λa·b=1-=0,所以λ=2.
答案:2
考点一 平面向量数量积的运算(基础型)
复****指导1.理解平面向量数量积的含义及其物理意义.2.体会平面向量的数量积与向量投影的关系.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
核心素养:数学运算、数学抽象
(一题多解)(2019·高考天津卷)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE,则·=________.
【解析】 法一:在等腰△ABE中,易得∠BAE=∠ABE=30°,故BE=2,则·=(-)·(+)=·+·--·=5×2×cos 30°+5×2×cos 180°-12-2×2×cos 150°=15-10-12+6=-1.
法二:在△ABD中,由余弦定理可得
BD==,
所以cos∠ABD==-,则sin∠ABD=.设与的夹角为θ,则cos θ=cos(180°-∠ABD+30°)=-cos(∠ABD-30°)=-cos∠ABD·cos 30°-sin∠ABD·sin 30°=-,在△A
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档