下载此文档

人教版高中数学第3节 成对数据的统计分析.doc


高中 高二 下学期 数学 人教版

1340阅读234下载24页517 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第3节 成对数据的统计分析.doc
文档介绍:
第3节 成对数据的统计分析
考试要求 1.了解样本相关系数的统计含义.2.了解一元线性回归模型和2×2列联表,会运用这些方法解决简单的实际问题.3.会利用统计软件进行数据分析.
1.变量的相关关系
(1)相关关系
两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.
(2)相关关系的分类:正相关和负相关.
(3)线性相关
一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们就称这两个变量线性相关.
一般地,如果两个变量具有相关性,但不是线性相关,那么我们就称这两个变量非线性相关或曲线相关.
2.样本相关系数
(1)相关系数r的计算
变量x和变量y的样本相关系数r的计算公式如下:
(2)相关系数r的性质
①当r>0时,称成对样本数据正相关;当r<0时,成对样本数据负相关;当r=0时,成对样本数据间没有线性相关关系.
②样本相关系数r的取值范围为[-1,1].
当|r|越接近1时,成对样本数据的线性相关程度越强;
当|r|越接近0时,成对样本数据的线性相关程度越弱.
3.一元线性回归模型
(1)经验回归方程与最小二乘法
我们将=x+称为Y关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的,叫做b,a的最小二乘估计,
其中

(2)利用决定系数R2刻画回归效果
,R2越大,即拟合效果越好,R2越小,模型拟合效果越差.
4.列联表与独立性检验
(1)2×2列联表
一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其2×2列联表为
x
y
合计
y=y1
y=y2
x=x1
a
b
a+b
x=x2
c
d
c+d
合计
a+c
b+d
n=a+b+c+d
(2)临界值
χ2=.忽略χ2的实际分布与该近似分布的误差后,对于任何小概率值α,可以找到相应的正实数xα,使得P(χ2≥xα)=α成立.我们称xα为α的临界值,这个临界值就可作为判断χ2大小的标准.
(3)独立性检验
基于小概率值α的检验规则是:
当χ2≥xα时,我们就推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;
当χ2<xα时,我们没有充分证据推断H0不成立 ,可以认为X和Y独立.
这种利用χ2的取值推断分类变量X和Y是否独立的方法称为χ2独立性检验,读作“卡方独立性检验”,简称独立性检验.
下表给出了χ2独立性检验中几个常用的小概率值和相应的临界值
α
0.1
0.05
0.01
0.005
0.001

2.706
3.841
6.635
7.879
10.828
1.求解经验回归方程的关键是确定回归系数,,应充分利用回归直线过样本点的中心(,).
2.根据经验回归方程计算的值,仅是一个预报值,不是真实发生的值.
3.根据χ2的值可以判断两个分类变量有关的可信程度,若χ2越大,则两分类变量有关的把握越大.
1.思考辨析(在括号内打“√”或“×”)
(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.(  )
(2)通过经验回归方程=x+可以估计预报变量的取值和变化趋势.(  )
(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.(  )
(4)事件X,Y关系越密切,则由观测数据计算得到的χ2的值越大.(  )
答案 (1)√ (2)√ (3)√ (4)√
2.(多选)在统计中,由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)利用最小二乘法得到两个变量的经验回归方程为=x+,那么下列说法正确的是(  )
A.相关系数r不可能等于1
B.直线=x+必经过点(,)
C.直线=x+表示最接近y与x之间真实关系的一条直线
D.相关系数为r,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小
答案 BCD
解析 相关系数的取值范围是|r|≤1,故A错误;直线=x+必过样本点中心即点(,),故B正确;直线=x+是采用最小二乘法求解出的直线方程,接近真实关系,故C正确;相关系数r的绝对值越接近于1,表示相关程度越强,越接近于0,相关程度越弱,故D正确.
3.(2022·烟台模拟)某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算χ2=7.069,则认为“学生性别与支持某项活动有关系”的犯错误的概率不超过(  )
A.0.1% B.1% C.99% D.99.9%
答案 B
解析 ∵χ2
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档