下载此文档

人教版高中数学第4节 数列求和.doc


高中 高二 下学期 数学 人教版

1340阅读234下载24页310 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第4节 数列求和.doc
文档介绍:
第4节 数列求和
考试要求 1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列,非等比数列求和的几种常见方法.
1.特殊数列的求和公式
(1)等差数列的前n项和公式:
Sn==na1+d.
(2)等比数列的前n项和公式:
Sn=
2.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(2)裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.
1.1+2+3+4+…+n=.
2.12+22+…+n2=.
3.裂项求和常用的三种变形
(1)=-.
(2)=.
(3)=-.
4.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.
1.思考辨析(在括号内打“√”或“×”)
(1)若数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.(  )
(2)当n≥2时,=(-).(  )
(3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即可根据错位相减法求和.(  )
(4)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,则数列{an}的通项公式是an=.(  )
答案 (1)√ (2)√ (3)× (4)√
解析 (3)要分a=0或a=1或a≠0且a≠1讨论求解.
2.(2022·烟台模拟)设数列{an}的前n项和为Sn,若an=,则S99=(  )
A.7 B.8 C.9 D.10
答案 C
解析 an==-,
所以S99=(-1)+(-)+…+(-)=-1=9.
3.(2022·石家庄检测)数列1,3,5,7,…,(2n-1)+…的前n项和Sn的值等于(  )
A.n2+1- B.2n2-n+1-
C.n2+1- D.n2-n+1-
答案 A
解析 Sn=[1+3+…+(2n-1)]+=+
=n2+1-.
4.(易错题)数列{(n+3)·2n-1}前20项的和为________.
答案 22·220-2
解析 S20=4·1+5·21+6·22+…+23·219,2S20=4·2+5·22+6·23+…+23·220,
两式相减,得-S20=4+2+22+…+219-23·220=4+-23·220=-22·220+2.
故S20=22·220-2.
5.(2021·河北“五个一”名校质检)若f(x)+f(1-x)=4,an=f(0)+f+…+f+f(1)(n∈N*),则数列{an}的通项公式为________.
答案 an=2(n+1)
解析 由f(x)+f(1-x)=4,
可得f(0)+f(1)=4,…,
f+f=4,
所以2an=(f(0)+f(1))
++…+(f(1)+f(0))=4(n+1),即an=2(n+1).
 考点一 分组转化求和
例1 已知等差数列{an}的前n项和为Sn,且关于x的不等式a1x2-S2x+2<0的解集为(1,2)
.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=a2n+2an-1,求数列{bn}的前n项和Tn.
解 (1)设等差数列{an}的公差为d,
因为关于x的不等式a1x2-S2x+2<0的解集为(1,2),
所以=1+2=3.
又S2=2a1+d,所以a1=d,
易知=2,所以a1=1,d=1.
所以数列{an}的通项公式为an=n.
(2)由(1)可得,a2n=2n,2an=2n.
因为bn=a2n+2an-1,所以bn=2n-1+2n,
所以数列{bn}的前n项和Tn=(1+3+5+…+2n-1)+(2+22+23+…+2n)
=+=n2+2n+1-2.
感悟提升 1.若数列{cn}满足cn=an±bn,且{an},{bn}为等差或等比数列,可采用分组求和法求数列{cn}的前n项和.
2.若数列{cn}满足cn=其中数列{an},{bn}是等比数列或等差数列,可采用分组求和法求{cn}的前n项和.
训练1 已知数列{an}的通项公式是an=2·3n-1+(-1)n(ln 2-ln 3)+(-1)nnln 3,求其前n项和Sn.
解 Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档