下载此文档

人教版高中数学第7讲 立体几何中的向量方法(一)——证明平行与垂直.doc


高中 高二 下学期 数学 人教版

1340阅读234下载7页608 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第7讲 立体几何中的向量方法(一)——证明平行与垂直.doc
文档介绍:
第7讲 立体几何中的向量方法(一)——证明平行与垂直
一、选择题
1.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则(  )
A.l∥α B.l⊥α
C.l⊂α D.l与α相交
解析 ∵n=-2a,∴a与平面α的法向量平行,∴l⊥α.
答案 B
2.若=λ+μ,则直线AB与平面CDE的位置关系是(  )
A.相交 B.平行
C.在平面内 D.平行或在平面内
解析 ∵=λ+μ,∴,,共面.
则AB与平面CDE的位置关系是平行或在平面内.
答案 D
3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是(  )
A.P(2,3,3) B.P(-2,0,1)
C.P(-4,4,0) D.P(3,-3,4)
解析 逐一验证法,对于选项A,=(1,4,1),
∴·n=6-12+6=0,∴⊥n,
∴点P在平面α内,同理可验证其他三个点不在平面α内.
答案 A
4.(2017·西安月考)如图,F是正方体ABCD-A1B1C1D1的棱CD的中点.E是BB1上一点,若D1F⊥DE,则有(  )
A.B1E=EB
B.B1E=2EB
C.B1E=EB
D.E与B重合
解析 分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方形的边长为2,则D(0,0,0),F(0,1,0),D1(0,0,2),设E(2,2,z),=(0,1,-2),=(2,2,z),∵·=0×2+1×2-2z=0,∴z=1,∴B1E=EB.
答案 A
5.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:
①A1M∥D1P;
②A1M∥B1Q;
③A1M∥平面DCC1D1;
④A1M∥平面D1PQB1.
以上说法正确的个数为(  )
A.1 B.2 C.3 D.4
解析 =+=+,=+=+,∴∥,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥面DCC1D1,A1M∥面D1PQB1.①③④正确.
答案 C
二、填空题
6.(2017·武汉调研)已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n=(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.
解析 设平面α的法向量为m=(x,y,z),
由m·=0,得x·0+y-z=0⇒y=z,
由m·=0,得x-z=0⇒x=z,取x=1,
∴m=(1,1,1),m=-n,∴m∥n,∴α∥β.
答案 α∥β
7.(2016·青岛模拟)已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x+y=________.
解析 由条件得解得x=,y=-,z=4,
∴x+y=-=.
答案 
8.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的序号是________.
解析 
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档