下载此文档

2022届高考数学一轮复习(人教版)第3章 §3.3 导数与函数的极值、最值.docx


高中 高二 下学期 数学 人教版

1340阅读234下载15页446 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022届高考数学一轮复习(人教版)第3章 §3.3 导数与函数的极值、最值.docx
文档介绍:
§3.3 导数与函数的极值、最值
考试要求 1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.
1.函数的极值与导数
条件
f′(x0)=0
x0附近的左侧f′(x)>0,右侧f′(x)<0
x0附近的左侧f′(x)<0,右侧f′(x)>0
图象
极值
f(x0)为极大值
f(x0)为极小值
极值点
x0为极大值点
x0为极小值点
2.函数的最值与导数
(1)函数f(x)在区间[a,b]上有最值的条件:
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:
①求函数y=f(x)在区间(a,b)上的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
微思考
1.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的什么条件?
提示 必要不充分.
2.函数的极大值一定大于极小值吗?
提示 不一定.函数的极大值可能大于、小于或等于函数的极小值.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数f(x)在区间(a,b)上不存在最值.( × )
(2)函数的极小值一定是函数的最小值.( × )
(3)函数的极小值一定不是函数的最大值.( √ )
(4)函数y=f′(x)的零点是函数y=f(x)的极值点.( × )
题组二 教材改编
2.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为(  )
A.1 B.2 C.3 D.4
答案 A
解析 由题意知只有在x=-1处f′(-1)=0,且其两侧导数符号为左负右正.
3.当x>0时,ln x,x,ex的大小关系是________.
答案 ln x<x<ex
解析 构造函数f(x)=ln x-x,则f′(x)=-1,可得x=1为函数f(x)在(0,+∞)上唯一的极大值点,也是最大值点,故f(x)≤f(1)=-1<0,所以ln x<x.同理可得x<ex,故ln x<x<ex.
4.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.
答案 a3
解析 容积V=(a-2x)2x,0<x<,则V′=2(a-2x)×(-2x)+(a-2x)2=(a-2x)(a-6x),由V′=0得x=或x=(舍去),则x=为V在定义域内唯一的极大值点也是最大值点,此时Vmax=a3.
题组三 易错自纠
5.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是(  )
A.(-∞,-]∪[,+∞)
B.(-∞,-)∪(,+∞)
C.(-,)
D.[-,]
答案 B
解析 f′(x)=3x2-2ax+2,
由题意知f′(x)有变号零点,
∴Δ=(2a)2-4×3×2>0,
解得a>或a<-.
6.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=________.
答案 4
解析 f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m.所以在[0,3]上,f(x)max=f(0)=4,所以m=4.
题型一 利用导数求函数的极值问题
命题点1 根据函数图象判断极值
例1 (多选)设函数f(x)在R上可导,其导函数为f′(x),且函数g(x)=xf′(x)的图象如图所示,则下列结论中一定成立的是(  )
A.f(x)有两个极值点
B.f(0)为函数的极大值
C.f(x)有两个极小值
D.f(-1)为f(x)的极小值
答案 BC
解析 由题图知,当x∈(-∞,-2)时,g(x)>0,
∴f′(x)<0,
当x∈(-2,0)时,g(x)<0,∴f′(x)>0,
当x∈(0,1)时,g(x)<0,∴f′(x)<0,
当x∈(1,+∞)时,g(x)>0,∴f′(x)>0.
∴f(x)在(-∞,-2),(0,1)上单调递减,
在(-2,0),(1,+∞)上单调递增.
故AD错误,BC正确.
命题点2 求已知函数的极值
例2 已知函数f(x)=x2-1-2aln x(a≠0),求函数f(x)的极值.
解 因为f(x)=x2-1-2aln x(x>
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档